Featured Research

from universities, journals, and other organizations

Novel 'Gene Toggles' In Rice, World's Top Food Crop

Date:
April 10, 2008
Source:
University of Delaware
Summary:
Researchers have found a new type of molecule -- a kind of "micro-switch" -- that can turn off genes in rice, which is the primary source of food for more than half the world's population.

Blake Meyers, associate professor of plant and soil sciences at UD, a collaborator on the research, is working to determine when the newly discovered microRNA in rice first evolved.
Credit: Photo by Kathy F. Atkinson, Image courtesy of University of Delaware

University of Delaware researchers, in collaboration with U.S. and international colleagues, have found a new type of molecule--a kind of “micro-switch”--that can turn off genes in rice, which is the primary source of food for more than half the world's population.

Related Articles


Composed of short lengths of ribonucleic acids (RNAs), on the order of about 20 nucleotides long, these novel molecules, called natural antisense microRNAs (nat-miRNAs), target the genes sitting directly across from them on the opposite strand of DNA in a rice cell.

In addition to uncovering a new genetic switch and gaining insight about its pathways and evolution, which are important to the health of a grain that feeds most of the world, the research also may help scientists locate this type of novel gene regulator in other organisms, including humans. MicroRNAs regulate 30 percent of human genes and thus are critical to human health and development.

The research was led by Pamela Green, the Crawford Greenewalt Chair of Plant Sciences at UD, and Blake Meyers, associate professor of plant and soil sciences, and their laboratory groups at the Delaware Biotechnology Institute, including associate scientist Cheng Lu, postdoctoral researchers Dong-Hoon Jeong and Kan Nobuta, graduate students Karthik Kulkarni, Manoj Pillay, and Shawn Thatcher and research associate Rana German.

Scientists at Cold Spring Harbor Laboratory and at the Chinese Academy of Sciences collaborated on the project.

MicroRNAs are small RNA molecules that play a key role in regulating cellular processes, including a cell's development and its responses to stress. These micro-molecules bind to specific messenger RNA molecules, which carry instructions to the cells to make particular proteins. This binding typically causes the messenger RNAs to be degraded in plant cells.

“We were using a deep-sequencing approach to identify new microRNAs when we found these novel examples,” said Green. “These tiny RNA molecules are a special type of microRNA that have an antisense configuration relative to their targets. It's an exciting finding. We believe they could be present in many organisms,” she noted.

Some 240 microRNAs previously had been annotated in rice. Using a high-throughput gene-sequencing technique known as Massively Parallel Signature Sequencing (MPSS), the UD research team analyzed over 4 million small RNAs from 6 rice samples, which yielded 24 new microRNAs, including the unique new group of molecules called natural antisense microRNAs.

When a gene is ready to produce a protein, its two strands of DNA unravel. The first strand, called the “sense” transcript, produces messenger RNA, which carries the recipe for making a specific protein. However, the other strand of DNA may produce a complementary antisense RNA molecule, which sometimes can block production of the protein, thus turning off, or “silencing,” the gene.

Green noted that such microRNAs are not present in the common research plant Arabidopsis, which is a dicotyledon, a plant group that has two seed leaves (cotyledons) when it first sprouts. However, the UD team has identified the novel microRNAs in monocotyledons--plants that have solitary seed leaves--such as rice, corn and other grains.

“The novel microRNAs, target sites, and sense-antisense transcript arrangement that we discovered are conserved among monocots, indicating that this pathway is at least 50 million years old,” Meyers noted.

The next step in the research, Green said, will be to try to understand how microRNAs help rice plants respond to adverse environmental conditions, such as drought or limited nutrient availability.

In addition, the UD group currently is analyzing small RNAs in a diverse set of plant species to determine if this new class of microRNA may be present in a broader set of monocots or other plants.

“Comparative genomics is an important method for understanding microRNA evolution and diversity and has the potential to tell us when this type of natural antisense-microRNA might have first evolved,” Meyers said.

The discovery is reported in the March 25 issue of the Proceedings of the National Academy of Sciences of the United States of America. The research was funded by the National Science Foundation and the U.S. Department of Agriculture. Additionally, UD postdoctoral researcher Dong-Hoon Jeong was partially supported by a Korean Research Foundation Fellowship funded by the Korean government, and doctoral student Shawn Thatcher was supported by a training grant awarded to UD's multidisciplinary Chemistry/Biology Interface Program from the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of Delaware. Note: Materials may be edited for content and length.


Cite This Page:

University of Delaware. "Novel 'Gene Toggles' In Rice, World's Top Food Crop." ScienceDaily. ScienceDaily, 10 April 2008. <www.sciencedaily.com/releases/2008/04/080409174609.htm>.
University of Delaware. (2008, April 10). Novel 'Gene Toggles' In Rice, World's Top Food Crop. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2008/04/080409174609.htm
University of Delaware. "Novel 'Gene Toggles' In Rice, World's Top Food Crop." ScienceDaily. www.sciencedaily.com/releases/2008/04/080409174609.htm (accessed October 25, 2014).

Share This



More Plants & Animals News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins