Featured Research

from universities, journals, and other organizations

Elastic Stresses Influence Formation Of Leaf Veins

Date:
April 13, 2008
Source:
Public Library of Science
Summary:
Elastic stresses may play a crucial role in determining a leaf's venation pattern, according to a new study. Biologists have developed a model that reproduces statistical properties of venation patterns, based on the assumption that cells can suffer abrupt elastic distortions during growth. These distortions appear due to the elastic stresses generated by the unequal growth rate of different leaf tissues.

Elastic stresses may play a crucial role in determining a leaf's venation pattern, according to a joint Argentinian-French study. The researchers have developed a model that reproduces statistical properties of venation patterns, based on the assumption that cells can suffer abrupt elastic distortions during growth. These distortions appear due to the elastic stresses generated by the unequal growth rate of different leaf tissues.

Related Articles


Leaf veins are the channels that conduct substances within the leaf and lend support to the leaf tissue. The accepted view of vein formation claims that the transport of the hormone auxin triggers cell differentiation to form veins. Although auxin plays a fundamental role in vein formation, there are important features of the leaf vascular system which remain unexplained. In particular, flux of auxin would produce a tree-like branched vein pattern, reminiscent of a river network, while real venation patterns are highly interconnected, more akin to a crack pattern in mud or paint.

These facts led Fabiana Laguna, Steffen Bohn, and Eduardo Jagla to further analyze a previously-proposed hypothesis that elastic stresses play an important role in leaf venation. To test whether this hypothesis could sustain a quantitative comparison with actual venation patterns, they developed and implemented a numerical model, and found simulated patterns with statistical properties similar to natural ones.

The full explanation for the development of veins could involve both elastic stresses and the influence of auxin, the authors say. They believe that their study could trigger further experimental work to test the relevance of elastic stresses in vein formation.

Journal reference: Laguna MF, Bohn S, Jagla EA (2008) The Role of Elastic Stresses on Leaf Venation Morphogenesis. PLoS Comput Biol 4(4): e1000055. doi:10.1371/journal.pcbi.1000055


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Cite This Page:

Public Library of Science. "Elastic Stresses Influence Formation Of Leaf Veins." ScienceDaily. ScienceDaily, 13 April 2008. <www.sciencedaily.com/releases/2008/04/080411083002.htm>.
Public Library of Science. (2008, April 13). Elastic Stresses Influence Formation Of Leaf Veins. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2008/04/080411083002.htm
Public Library of Science. "Elastic Stresses Influence Formation Of Leaf Veins." ScienceDaily. www.sciencedaily.com/releases/2008/04/080411083002.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
The Hottest Food Trends for 2015

The Hottest Food Trends for 2015

Buzz60 (Dec. 17, 2014) Urbanspoon predicts whicg food trends will dominate the culinary scene in 2015. Mara Montalbano (@maramontalbano) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins