Featured Research

from universities, journals, and other organizations

E. Coli In Charles River Found To Be High After Long Periods Without Rain: New Model Developed

Date:
May 2, 2008
Source:
Northeastern University
Summary:
It is a common belief that the water quality of the Charles River and other lakes, streams and rivers is at its worst after a large rainfall because of pollutants carried by runoff. However, a recent study found high concentrations of E. coli bacteria in the Charles River after a long period of no rain.

It is a common belief that the water quality of the Charles River and other lakes, streams and rivers is at its worst after a large rainfall because of pollutants carried by runoff. However, a recent study completed by researchers at Northeastern University in Boston found high concentrations of E. coli bacteria in the Charles River after a long period of no rain.
Credit: Image courtesy of Northeastern University

It is a common belief that the water quality of the Charles River and other lakes, streams and rivers is at its worst after a large rainfall because of pollutants carried by runoff. However, a recent study completed by researchers at Northeastern University in Boston found high concentrations of E. coli bacteria in the Charles River after a long period of no rain. Ferdi Hellweger, Ph.D., Assistant Professor of Civil and Environmental Engineering and Acting Director of the Center for Urban Environmental Studies, both at Northeastern, used high-resolution monitoring and modeling to understand the fate and transport of E. coli bacteria in the lower section of the Charles River to determine what factors may lead to the increased concentration.

The results, which were published in the April issue of the Journal of the American Water Resources Association, go above and beyond the current data available about the water quality in the Charles and have the potential to impact the location of future beaches and their management.

Because current monitoring programs do not resolve the small-scale patterns of E. coli, Hellweger and his team carried out a high-resolution monitoring program. Using spatial and temporal surveys at different intervals and locations, Hellweger and his team gathered 757 samples along transects across and along the river, and over time at a fixed location. The results indicated an increased concentration of E. coli after a period of little rainfall. To make sense of these results, they developed a mathematical model of the river. The model accounts for various drivers, including upstream and downstream flow, wind, combined sewer overflow (CSO) and non-CSO flow from two major tributaries, the Muddy River and the Stony Brook. Based on hydrodynamics and die-off kinetics, the model reproduced the general patterns of E. coli in the water over space and time.

“Our analysis suggests that the Stony Brook and Muddy River are the predominant sources of E. coli in the lower Charles River,” said Hellweger, whose interest in urban hydrology drove this research project. “However, it is important to determine where the bacteria go and their concentration at different times and locations.”

One surprising finding was the effect of the New Charles River Dam, which when open, allows the Charles River to flow downstream and empty into the Boston Harbor. When it is closed, however, the Charles River acts more like a lake or a reservoir, creating a static environment. Thus, in addition to rainfall, the Dam operation cycle does affect the level of bacteria in the Charles River.

“Our study results show that water quality in the Charles River is impacted by several factors, including the New Charles River Dam,” added Hellweger. “While the primary focus of the Dam is to control flooding and navigation, I think that taking water quality issues into account could help reduce public health risk to present boaters and future beachgoers in the Charles,” added Hellweger.

Their model can be used to predict water quality in the lower Charles River, which can be used to evaluate various management scenarios and assess public health risk to swimmers at different times and locations.

In a 2002 study, 25% of surveyed beaches had at least one advisory or area closed, mostly due to unsafe levels of certain forms of bacteria. Exposure to unsafe levels of bacterial can sometimes result in recreational water illnesses (RWI), causing diarrhea, respiratory, skin, ear and eye infections.

Water pollution continues to be a public health threat, and because the Summer is quickly approaching, there will be a heightened interest in protecting people who spend time in the water. “My goal is to help make the Charles River a place where people can swim safely,” said Hellweger.


Story Source:

The above story is based on materials provided by Northeastern University. Note: Materials may be edited for content and length.


Cite This Page:

Northeastern University. "E. Coli In Charles River Found To Be High After Long Periods Without Rain: New Model Developed." ScienceDaily. ScienceDaily, 2 May 2008. <www.sciencedaily.com/releases/2008/05/080502133720.htm>.
Northeastern University. (2008, May 2). E. Coli In Charles River Found To Be High After Long Periods Without Rain: New Model Developed. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2008/05/080502133720.htm
Northeastern University. "E. Coli In Charles River Found To Be High After Long Periods Without Rain: New Model Developed." ScienceDaily. www.sciencedaily.com/releases/2008/05/080502133720.htm (accessed July 29, 2014).

Share This




More Earth & Climate News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins