Featured Research

from universities, journals, and other organizations

Glowing Zebrafish Help Researchers Track Role Of Sugars In The Cell

Date:
May 6, 2008
Source:
University of California - Berkeley
Summary:
The transparent embryos of zebrafish are popular models of development, and scientists routinely tag proteins with tracers to study protein trafficking in the embryo. Sugars, which decorate 90 percent of the proteins on a cell's surface, have been harder to track. Now, UC Berkeley scientists have developed a way to attach fluorophores to sugars and follow their changing patterns throughout early development, providing a tool that could reveal the true role of cell-surface sugars.

Fluorescently labeled sugars light up to reveal cells in the skin layer of the jaw region of a three-day-old zebrafish embryo, seen from below with the nose at the top. More recently produced carbohydrates (red) are on the surface of cells, creating red rings, while carbohydrates produced earlier in development (green) have moved to the inside of cells, making green disks. Yellow areas are where old and new carbos congregate together.
Credit: Bertozzi laboratory/UC Berkeley

Using artificial sugar and some clever chemistry, University of California, Berkeley, researchers have made glow-in-the-dark fish whose internal light comes from the sugar coating on their cells.

Related Articles


This novel method of fluorescently tagging the sugar chains, or carbohydrates, that coat cells is a new tool for those studying development in the zebrafish, a laboratory organism popular because its transparent embryos allow easy observation of living cells as they develop over time.

"Most people think of carbohydrates as food, but the surface of any cell in our body is adorned with a ton of sugars as well as proteins that allow cells to communicate with other cells and invading pathogens," said UC Berkeley graduate student Jeremy M. Baskin. "People have had for many years the ability to image specific proteins, but not carbohydrates. We have developed for the first time methods for labeling and imaging carbohydrates inside an intact animal."

"An understanding of how, when and where cells dust themselves with sugar may shed light on how stem cells develop into tissues, as well as turn up markers of disease, such as cancer, or strategies for battling infectious organisms," said first author Scott T. Laughlin, who, like Baskin, is a graduate student in the Department of Chemistry.

One big advantage of the technique is that it is non-toxic and can be used to study living cells, Baskin said, whereas other methods of tagging cell-surface carbohydrates cannot be performed on living specimens.

Baskin and Laughlin, together with Carolyn Bertozzi, UC Berkeley professor of chemistry and of molecular and cell biology, and developmental geneticist Sharon L. Amacher, associate professor of molecular and cell biology, reported their results in the May 2 issue of the journal Science. Bertozzi also is director of the Molecular Foundry at Lawrence Berkeley National Laboratory, a Howard Hughes Medical Institute investigator, a faculty affiliate of the California Institute for Quantitative Biosciences (QB3) and the T.Z. and Irmgard Chu Distinguished Professor of Chemistry at UC Berkeley.

"We have genes in our body coding for proteins, but proteins get modified in lots of different ways, one of which is by addition of sugars that stick out on the cell surface and change the way the protein interacts with the environment," Amacher said. "One of the big mysteries is how the pattern of sugar modification changes during development, or in cancer cells versus non-cancer cells, for example. The exciting work Carolyn is now doing is finding ways that we can actually see the sugar labels on proteins."

Scientists have known for more than a century how to attach fluorescent dyes to proteins, and have used the technique to study protein trafficking in cell culture and even in whole organisms, though often at the expense of killing the cells or organism. Bertozzi has focused on making it just as easy to study the sugars on cells, in part to investigate their role in such diseases as tuberculosis and influenza. In the latter, the flu virus enters cells by way of hemagglutinin, a sugar-protein complex on the viral surface that attaches to sugars on the surface of host cells. But sugars clearly have roles in cell-to-cell communication that have yet to be discovered.

One technique Bertozzi has developed is to feed cells an artificial sugar that looks so much like the real thing that cells are tricked into incorporating the sugar into their carbohydrate chains. Once the sugar becomes part of the forest of carbohydrates adorning a living cell, she then uses a non-toxic chemical reaction to attach small organic labels to it. Simple, highly selective and non-toxic chemical reactions like this have come to be called click chemistry.

In their work on zebrafish, Baskin, Bertozzi and their colleagues soaked zebrafish embryos in the artificial sugar N-azidoacetylgalactosamine, which the embryo cells then used as a carbohydrate building block to replace the natural sugar N-acetylgalactosamine. The researchers then modified a chemical reaction that is normally toxic to cells to eliminate the toxic copper catalyst and employed this reaction to attach a small fluorescent molecule, a fluorophore, to the "azido" part of the unnatural sugar.

The copper-free click chemistry worked with three separate fluorophores, enabling the researchers to make two-to five-day-old zebrafish cells glow red, green and even near infrared, which is invisible to the eye but can be detected by some microscopes. They were able to observe differences over time in when and where on a single cell the sugar appeared, sugar movement through the cell interior, and in which tissues the sugar showed up.

"We're hoping to extend the technique to other sugars, too," Baskin said, noting that of the nine sugars used by vertebrates to build carbohydrates, Bertozzi's lab has found artificial surrogates for four of them. "We also want to try getting (artificial sugar) to work in different organisms and different disease models, such as cancer models in mice. Basically, we are providing this as a tool for the general community to use."

Amacher, who studies tissue patterning in the very early zebrafish embryo, is anxious to work with the labeling technique, but is waiting until Bertozzi's group gets it to work in hours-old embryos, at a stage when muscles and organs begin to form.

"Once they get the labeling technique to work at very early times, it is going to be an even more exciting collaboration, and hopefully, a continuing one," she said.

The work was supported by the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of California - Berkeley. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Berkeley. "Glowing Zebrafish Help Researchers Track Role Of Sugars In The Cell." ScienceDaily. ScienceDaily, 6 May 2008. <www.sciencedaily.com/releases/2008/05/080505094133.htm>.
University of California - Berkeley. (2008, May 6). Glowing Zebrafish Help Researchers Track Role Of Sugars In The Cell. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2008/05/080505094133.htm
University of California - Berkeley. "Glowing Zebrafish Help Researchers Track Role Of Sugars In The Cell." ScienceDaily. www.sciencedaily.com/releases/2008/05/080505094133.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins