Featured Research

from universities, journals, and other organizations

Scientists Discover Key Patterns In The Packaging Of Genes

Date:
July 15, 2008
Source:
Cold Spring Harbor Laboratory
Summary:
Although every cell of our bodies contains the same genetic instructions, specific genes typically act only in specific cells at particular times. Other genes are "silenced" in a variety of ways. One mode of gene silencing depends upon the way DNA, the genetic material, is packed in the nucleus of cells.

Although every cell of our bodies contains the same genetic instructions, specific genes typically act only in specific cells at particular times. Other genes are "silenced" in a variety of ways. One mode of gene silencing depends upon the way DNA, the genetic material, is packed in the nucleus of cells.

When packed very tightly around complexes of proteins called histones, the DNA double helix is rendered physically inaccessible to molecules that mediate gene expression. Now, a research team that includes Michael Q. Zhang, Ph.D., a professor at Cold Spring Harbor Laboratory (CSHL), has published a comprehensive analysis of modification patterns in histones.

Using a new technology called ChIP-Seq, the team identified 39 histone modifications, including a "core set" of 17 modifications that tended to occur together and were associated with genes observed to be active.

Modification Patterns With Different "Personalities"

Scientists have long known that chemical changes at particular locations in histone complexes influence how tightly the DNA is wrapped around the histones. "But it is important to know whether particular modifications occur together in characteristic patterns, or if these patterns can predict gene activities," Dr. Zhang explained.

At the heart of the team's efforts to determine this, Keji Zhao, Ph.D., of the National Heart, Blood, and Lung Institute of the National Institutes of Health, and his colleagues developed a method to map modifications in human white blood cells known as CD4+ T cells. First they used an enzyme to cut the DNA into short segments, which remained attached to histone "spools." For each of 39 distinct histone modifications, the scientists used an antibody to extract matching histone-DNA combinations. Finally, they used the ChIP-Seq DNA-sequencing technology to determine which parts of the genome were bound to each type of modified histone.

The team's most recent research, published in the July 2008 issue of Nature Genetics, maps the DNA locations that bind to histones containing molecular configurations called acetyl groups at 18 different positions in the "tails" of the histone proteins. The scientists combined this information with earlier maps for 19 different changes called methylation modifications, and for replacement of one of the histone proteins with a well-known variant.

The various modifications showed distinctive "personalities," each preferentially associating with particular regulatory regions of genes.

Looking for Patterns

Mapping many modifications enabled the researchers to explore whether different types tend to appear together in the same type of DNA regulatory regions. They found that some recurring combinations did occur frequently at "promoter" and "enhancer" regions in DNA, which are known to increase the activity of nearby genes. In particular, the team identified one combination of 17 modifications that was present in more than a quarter of the more than 12,000 promoter regions they examined.

On average, the genes corresponding to this "backbone" set were expressed more actively. That is to say, they were activated, setting the cellular machinery in motion to produce specific proteins, the workhorses of most life processes.

The rich relationships detected by the researchers among the various histone modifications suggests that specific combinations might carry specific meanings. Previous researchers have proposed a "histone code" hypothesis, which posits that a particular combination of modifications may be recognized by a particular protein module. Some scientists believe such histone code may determine the activity of a given gene.

But, cautions Dr. Zhang, while there are patterns, like the backbone, that are highly correlated, "none of them has exact predictive value." He maintains "there must be something else" that also affects gene activity.

Since genes with higher or lower expression levels may have the same patterns of modification, and not all active genes share a common pattern, the reality is likely more complex than a universal histone code that predicts exact gene expression level. Nonetheless, the new research provides a rich data source for understanding how specific combinations of histone modifications modulate the effects of many genes, in turn helping to modify activity within and among cells. "Critical future research should focus on finding proteins that target histone modifications to genetic regions with particular sequences," Dr. Zhang emphasized.


Story Source:

The above story is based on materials provided by Cold Spring Harbor Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Wang et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nature Genetics, 2008; 40 (7): 897 DOI: 10.1038/ng.154

Cite This Page:

Cold Spring Harbor Laboratory. "Scientists Discover Key Patterns In The Packaging Of Genes." ScienceDaily. ScienceDaily, 15 July 2008. <www.sciencedaily.com/releases/2008/07/080711141751.htm>.
Cold Spring Harbor Laboratory. (2008, July 15). Scientists Discover Key Patterns In The Packaging Of Genes. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2008/07/080711141751.htm
Cold Spring Harbor Laboratory. "Scientists Discover Key Patterns In The Packaging Of Genes." ScienceDaily. www.sciencedaily.com/releases/2008/07/080711141751.htm (accessed July 30, 2014).

Share This




More Plants & Animals News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Otters Enjoy Water Slides at Japan Zoo

Raw: Otters Enjoy Water Slides at Japan Zoo

AP (July 30, 2014) River otters were hitting the water slides to beat the summer heatwave on Wednesday at Ichikawa City's Zoological and Botanical Garden. (July 30) Video provided by AP
Powered by NewsLook.com
In Virginia, the Rise of a New Space Coast

In Virginia, the Rise of a New Space Coast

AP (July 30, 2014) Every summer, tourists make the pilgrimage to Chincoteague Island, Va. to see wild ponies cross the Assateague Channel. But, it's the rockets sending to supplies to the International Space Station that are making this a year-round destination. (July 30) Video provided by AP
Powered by NewsLook.com
Rodents Rampant in Gardens Around Louvre

Rodents Rampant in Gardens Around Louvre

AP (July 29, 2014) Food scraps and other items left on the grounds by picnickers brings unwelcome visitors to the grounds of the world famous and popular Louvre Museum in Paris. (July 29) Video provided by AP
Powered by NewsLook.com
Jane Goodall Warns Great Apes Face Extinction

Jane Goodall Warns Great Apes Face Extinction

AFP (July 29, 2014) The world's great apes face extinction within decades, renowned chimpanzee expert Jane Goodall warned Tuesday in a call to arms to ensure man's closest relatives are not wiped out. Duration: 00:58 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins