Featured Research

from universities, journals, and other organizations

New Therapies Revealed For Diabetes-induced Microvascular Disease

Date:
July 17, 2008
Source:
University of Bristol
Summary:
New findings could lead to future treatments to prevent lower limb amputations in diabetes. Diabetes can have serious complications like gangrene and skin ulcers due to a restriction of blood supply to and healing capacity of the affected areas and this causes the dysfunction of cells lining the blood vessels. Legs and feet are often severely affected, and, after blood supply is obstructed or injury, the tissue seems to be unable to heal itself by growing new blood vessels making the situation much worse.

New findings from Bristol scientists could lead to future treatments to prevent lower limb amputations in diabetes - which currently affect 100 people a week in the UK (source Diabetes UK).

Diabetes can have serious complications like gangrene and skin ulcers due to a restriction of blood supply to and healing capacity of the affected areas and this causes the dysfunction of cells lining the blood vessels. Legs and feet are often severely affected, and, after blood supply is obstructed or injury, the tissue seems to be unable to heal itself by growing new blood vessels making the situation much worse. If gangrenous wounds fail to heal amputation may be the only option.

Dr Costanza Emanueli, BHF Reader at Bristol University and colleagues at the Bristol Heart Institute have previously found that a group of growth factors - known as neurotrophins - play a role in the vascular system. Growth factors act on two completely different types of cellular receptors. One type, trk, mediates positive actions, such as survival and growing new blood vessels and the other, p75NTR, has not been comprehensively characterised.

In healthy blood vessels, the cells that line the blood vessels do not possess the p75NTR receptor, and the development of new blood vessels and healing of the obstructed blood supply and wounds is rapid. However, diabetes causes the cells lining the blood vessels to produce the p75NTR receptor, and prevents the growth of new blood vessels necessary for blood supply and healing of damaged tissue.

Dr Emanueli's group found that if they put the receptor gene into healthy blood vessel cells, the cells became dysfunctional. Equally, injecting the gene into healthy muscle and then restricting blood supply caused impaired healing following the injury identical to that seen in diabetes.

The final proof was to inhibit the p75NTR receptor in diabetic mice before restricting the blood supply to one of their "limbs". The researchers found that p75NTR inhibition enabled the limb to recover from the restricted blood flow and be well supplied with blood.

p75NTR acts by depressing the cell's normal signalling mechanisms that are necessary to stimulate the growth of new blood vessels. In its absence, this process proceeds normally.

Dr Emanueli said: "Our findings demonstrate the importance of understanding the individual factors responsible for such diabetes-induced complications. The data reveal that by suppressing the action of one particular gene, we can improve recovery of tissues following inadequate blood flow, and this opens up new avenues for its use to combat diabetes-induced vascular disease."

The research from the University of Bristol is published online in Circulation Research and was funded by the British Heart Foundation (BHF) and the European Vascular Genomic Network of Excellence (EVGN).


Story Source:

The above story is based on materials provided by University of Bristol. Note: Materials may be edited for content and length.


Cite This Page:

University of Bristol. "New Therapies Revealed For Diabetes-induced Microvascular Disease." ScienceDaily. ScienceDaily, 17 July 2008. <www.sciencedaily.com/releases/2008/07/080717091821.htm>.
University of Bristol. (2008, July 17). New Therapies Revealed For Diabetes-induced Microvascular Disease. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2008/07/080717091821.htm
University of Bristol. "New Therapies Revealed For Diabetes-induced Microvascular Disease." ScienceDaily. www.sciencedaily.com/releases/2008/07/080717091821.htm (accessed August 29, 2014).

Share This




More Health & Medicine News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3 Things To Know About The Ebola Outbreak's Progression

3 Things To Know About The Ebola Outbreak's Progression

Newsy (Aug. 29, 2014) Here are three things you need to know about the deadly Ebola outbreak's progression this week. Video provided by Newsy
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Who Could Be Burnt by WHO's E-Cigs Move?

Who Could Be Burnt by WHO's E-Cigs Move?

Reuters - Business Video Online (Aug. 28, 2014) The World Health Organisation has called for the regulation of electronic cigarettes as both tobacco and medical products. Ciara Lee looks at the impact of the move on the tobacco industry. Video provided by Reuters
Powered by NewsLook.com
CDC Director On Ebola Outbreak: 'It's Worse Than I Feared'

CDC Director On Ebola Outbreak: 'It's Worse Than I Feared'

Newsy (Aug. 28, 2014) CDC director Tom Frieden says the Ebola outbreak is even worse than he feared. But he also said there's still hope to contain it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins