Featured Research

from universities, journals, and other organizations

Microbes Beneath Sea Floor Genetically Distinct

Date:
July 22, 2008
Source:
Penn State
Summary:
Tiny microbes beneath the sea floor, distinct from life on the Earth's surface, may account for one-tenth of the Earth's living biomass, according to an interdisciplinary team of researchers, but many of these minute creatures are living on a geologic timescale.

Tiny microbes beneath the sea floor, distinct from life on the Earth's surface, may account for one-tenth of the Earth's living biomass, according to an interdisciplinary team of researchers, but many of these minute creatures are living on a geologic timescale.

Related Articles


"Our first study, back in 2006, made some estimates that the cells could double every 100 to 2,000 years," says Jennifer F. Biddle, PhD. recipient in biochemistry and former postdoctoral fellow in geosciences, Penn State. "Now we have the first comprehensive look at the genetic makeup of these microbes." Biddle is now a postdoctoral associate at the University of North Carolina, Chapel Hill.

The researchers looked at sediment samples from a variety of depths taken off the coast of Peru at Ocean Drilling Site 1229. They report their findings in the July 22 online issue of the Proceedings of the National Academy of Sciences.

"The Peruvian Margin is one of the most active surface waters in the world and lots of organic matter is continuously being deposited there," says Christopher H. House, associate professor of geoscience. "We are interested in how the microbial world differs in the subsea floor from that in the surface waters."

The researchers used a metagenomic approach to determine the types of microbes residing in the sediment 3 feet, 53 feet, 105 feet and 164 feet beneath the ocean floor. The use of the metagenomics, where bulk samples of sediment are sequences without separation, allows recognition of unknown organism and determination of the composition of the ecosystem.

"The results show that this subsurface environment is the most unique environment yet studied metagenomic approach known today," says House. "The world does look very different below the sediment surface." He notes that a small number of buried genetic fragments exist from the water above, but that a large portion of the microbes found are distinct and adapted to their dark and quiet world.

The researchers, who included Biddle; House; Stephan C. Schuster, associate professor; and Jean E. Brenchley, professor, biochemistry and molecular biology, Penn State; and Sorel Fitz-Gibbon, assistant research molecular biologist at the Center for Astrobiology, UCLA, found that a large percentage of the microbes were Archaea, single-celled organisms that look like Bacteria but are different on the metabolic and genetic levels. The percentage of Archaea increases with depth so that at 164 feet below the sea floor, perhaps 90 percent of the microbes are Archaea. The total number of organisms decreases with depth, but there are lots of cells, perhaps as many as 1,600 million cells in each cubic inch.

" These microbes influence the Earth's long-term carbon cycle and also these microbes may be quite ancient," says Biddle.

If the rest of the world is like the Peruvian Margin, then at least one tenth and as much as a third of the Earth's biomass could be these tiny microbes living in the mud. However, this population lives at an unusual rate. Single-celled organisms usually consume food for energy and then rather than grow larger, simply divide and reproduce themselves. While the Bacteria Escherichia Coli, as an example, doubles its numbers every 20 minutes, these Archaea double on the order of hundreds or thousands of years and consume very little energy.

"In essence, these microbes are almost, practically dead by our normal standards," says House. "They metabolize a little, but not much."

According to House, organisms metabolizing at such slow rates is what we could expect to find in other areas of our solar system because such environments have much less energy available than on Earth. Perhaps, similar organisms may be in hydrothermal vents beneath the ice of Europa -- the second moon of Jupiter -- or in subsurface aquifers of Mars.

"We do not expect the microbes in other places to be these microbes exactly," says House. "But, they could be living at a similar slow rate."

Biddle notes that these microbes could survive major Earth impacts by asteroids, so the subsea floor could be a refuge for life during extinction events. Now this study shows they may be a reservoir of novel genetic material as well. Her future research will focus on understanding the lifestyle of the microbes.

"For example, how do they die?" asks Biddle. "It is a simple question that we cannot answer."

The National Science Foundation, the NASA Astrobiology Institute, U.S. Department of Energy and Pa. Department of Health supported this work.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Microbes Beneath Sea Floor Genetically Distinct." ScienceDaily. ScienceDaily, 22 July 2008. <www.sciencedaily.com/releases/2008/07/080721173750.htm>.
Penn State. (2008, July 22). Microbes Beneath Sea Floor Genetically Distinct. ScienceDaily. Retrieved March 5, 2015 from www.sciencedaily.com/releases/2008/07/080721173750.htm
Penn State. "Microbes Beneath Sea Floor Genetically Distinct." ScienceDaily. www.sciencedaily.com/releases/2008/07/080721173750.htm (accessed March 5, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Thursday, March 5, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Praying Mantis Looks Long Before It Leaps

Praying Mantis Looks Long Before It Leaps

Reuters - Innovations Video Online (Mar. 5, 2015) — Slowed-down footage of the leaps of praying mantises show the insect&apos;s extraordinary precision, say researchers. Video provided by Reuters
Powered by NewsLook.com
Octopus Grabs Camera and Turns It Around On Photographer

Octopus Grabs Camera and Turns It Around On Photographer

Buzz60 (Mar. 5, 2015) — A photographer got the shot of a lifetime, or rather an octopus did, when it grabbed the camera and turned it around to take an amazing picture of the photographer. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com
Ringling Bros. Eliminating Elephant Acts

Ringling Bros. Eliminating Elephant Acts

AP (Mar. 5, 2015) — The Ringling Bros. and Barnum & Bailey Circus is ending its iconic elephant acts. The circus&apos; parent company, Feld Entertainment, told the AP exclusively that the acts will be phased out by 2018 over growing public concern about the animals. (March 5) Video provided by AP
Powered by NewsLook.com
Raw: Tourists Visit Rare Grey Whales in Mexico

Raw: Tourists Visit Rare Grey Whales in Mexico

AP (Mar. 4, 2015) — Once nearly extinct, grey whales now migrate in their thousands to Mexico&apos;s Vizcaino reserve in Baja California, in search of warmer waters to mate and give birth. Tourists flock to the reserve to see the whales, measuring up to 49 feet long. (March 4) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins