Featured Research

from universities, journals, and other organizations

New Biomass Technology Dramatically Increases Ethanol Yield From Grasses And Yard Waste

Date:
July 29, 2008
Source:
University of Georgia
Summary:
University of Georgia researchers have developed a new technology that promises to dramatically increase the yield of ethanol from readily available nonfood crops, such as Bermudagrass, switchgrass, Napiergrass -- and even yard waste.

University of Georgia researchers have developed a new technology that promises to dramatically increase the yield of ethanol from readily available non-food crops, such as Bermudagrass, switchgrass, Napiergrass—and even yard waste.

“Producing ethanol from renewable biomass sources such as grasses is desirable because they are potentially available in large quantities,” said Joy Peterson, professor of microbiology and chair of UGA’s Bioenergy Task Force. “Optimizing the breakdown of the plant fibers is critical to production of liquid transportation fuel via fermentation.” Peterson developed the new technology with former UGA microbiology student Sarah Kate Brandon, and Mark Eiteman, professor of biological and agricultural engineering.

The new technology features a fast, mild, acid-free pretreatment process that increases by at least 10 times the amount of simple sugars released from inexpensive biomass for conversion to ethanol. The technology effectively eliminates the use of expensive and environmentally unsafe chemicals currently used to pretreat biomass.

The technology is available for licensing from the University of Georgia Research Foundation, Inc., which has filed a patent application.

Inexpensive waste products—including corn stover or bagasse, the waste from corn and sugar cane harvests, fast-growing weeds—and non-food crops grown for biofuel, such as switchgrass, Napiergrass and Bermudagrass, are widely viewed as the best sustainable resources for ethanol made from biofuels.

“Using non-food crops that can be grown on marginal lands, like grasses, and fibrous waste streams like corn stover, is important because of the ongoing food-versus-fuel debate,” said Peterson. “When agricultural crops, such as corn or potatoes, are grown for biofuels production, the cost of the starting material may fluctuate greatly because of competing demands for food and feed. The trade-off with using a biomass like grasses is that grasses are harder to break apart than corn or potatoes, and the cost of making the same fuel, like ethanol, rises.”

Developing an efficient, cost-effective process to convert the fibrous stalks, leaves, and blades of plant wastes into simple sugars is the biggest challenge to bio-based ethanol production. Thick, complex plant cell walls are highly resistant to efforts to break them down.

Currently, woody biomass requires soaking under high pressure and temperatures in expensive, environmentally aggressive bases or acids before it is subjected to enzymes that digest it, producing simple sugars. The harsh pretreatment solutions subsequently must be removed and disposed of safely. They also cause formation of side products that can slow down the conversion of the sugars into ethanol.

In contrast, the environmentally friendly UGA technology eliminates the expense of harsh pretreatment chemicals and their disposal, and the formation of side products is minimal.

“The new technology has commercial application for the biomass industry, including producers of sugar cane, corn, switchgrass, Napiergrass and other woody biomass crops,” said Gennaro Gama, UGARF technology manager responsible for licensing this technology. “It may also help renewable energy and biofermentation companies—and local governments.

“By allowing for the use of myriad raw materials, this technology allows more options for ethanol facilities trying to meet nearby demand by using locally available, inexpensive starting materials,” he added. “This would greatly reduce the costs and carbon footprint associated with the delivery of raw materials to fermentation facilities and the subsequent delivery of ethanol to points of sale. Local production of ethanol may also protect specific areas against speculative fluctuations in fuel prices.

“It’s easy to imagine that this easy-to-use, inexpensive technology could be used by local governments, alone or in partnership with entrepreneurs, to meet local demand for ethanol, possibly using yard waste as a substrate,” he said.


Story Source:

The above story is based on materials provided by University of Georgia. Note: Materials may be edited for content and length.


Cite This Page:

University of Georgia. "New Biomass Technology Dramatically Increases Ethanol Yield From Grasses And Yard Waste." ScienceDaily. ScienceDaily, 29 July 2008. <www.sciencedaily.com/releases/2008/07/080728192938.htm>.
University of Georgia. (2008, July 29). New Biomass Technology Dramatically Increases Ethanol Yield From Grasses And Yard Waste. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2008/07/080728192938.htm
University of Georgia. "New Biomass Technology Dramatically Increases Ethanol Yield From Grasses And Yard Waste." ScienceDaily. www.sciencedaily.com/releases/2008/07/080728192938.htm (accessed October 2, 2014).

Share This



More Earth & Climate News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: 12 More Bodies Found on Japan Volcano

Raw: 12 More Bodies Found on Japan Volcano

AP (Oct. 1, 2014) — A dozen more bodies were found Wednesday as Japanese rescuers resumed efforts to find survivors and retrieve bodies of those trapped by Mount Ontake's eruption. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Cultural Learning In Wild Chimps Observed For The First Time

Cultural Learning In Wild Chimps Observed For The First Time

Newsy (Oct. 1, 2014) — Cultural transmission — the passing of knowledge from one animal to another — has been caught on camera with chimps teaching other chimps. Video provided by Newsy
Powered by NewsLook.com
Raw: Trapped Scientist Rescued from Cave in Peru

Raw: Trapped Scientist Rescued from Cave in Peru

AP (Oct. 1, 2014) — A Spanish scientist, who spent 12 days trapped about 1300 feet underground in a cave in Peru's remote Amazon region, was rescued on Tuesday. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Media, Industry Groups React To Calif. Plastic Bag Ban

Media, Industry Groups React To Calif. Plastic Bag Ban

Newsy (Sep. 30, 2014) — California is the first state in the country to ban single-use plastic bags in grocery, liquor and convenience stores. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins