Featured Research

from universities, journals, and other organizations

Improved Reaction Data Heat Up The Biofuels Harvest

Date:
August 12, 2008
Source:
National Institute of Standards and Technology
Summary:
Scientists have detailed some of the most fundamental processes involved in extracting sugars from biomass. Their findings should help engineers to improve their process designs in order to extract the maximum amount of fuel from a given measure of biomass.

New NIST research results are a step toward more efficient production of cellulosic ethanol, a biofuel that can be made from corn-harvest leftovers -- stalks, husks, leaves -- and the inedible parts of other plants as well as a diverse array of abundant nonfood plants such as switchgrass.
Credit: NREL photographer, Jim Yost

High food prices, concern over dwindling supplies of fossil fuels and the desire for clean, renewable energy have led many to seek ways to make ethanol out of cellulosic sources such as wood, hay and switchgrass. But today's processes are notoriously inefficient.

Related Articles


Researchers at the National Institute of Standards and Technology (NIST) have detailed some of the most fundamental processes involved in extracting sugars from biomass, the first step in producing ethanol by fermentation. Their findings should help engineers to improve their process designs in order to extract the maximum amount of fuel from a given measure of biomass.

Most of the ethanol produced in the United States is created by fermenting the sugars and starch found in corn. The capability to convert inedible plants and agricultural waste into usable sources for ethanol production will help to supplement alternatives to fossil fuels while reducing the diversion of food crops to energy uses.

Glucose can be extracted from two substances found in most plants: cellulose, the long molecule chains that comprise the cell walls of green plants, and its flimsier cell-wall counterpart, hemicellulose. The extracted glucose is then easily converted by fermentation to ethanol. NIST researchers, in collaboration with the National Renewable Energy Laboratory in Golden, Colo., have defined the theoretical limits of reactions important to cleaving, or breaking apart, cellulose and hemicellulose to produce glucose. They also determined that the energy needed to rupture these key bonds is a constant value for each molecular bond that is broken during the cleavage reactions.

According to Yadu Tewari, Brian Lang and Robert Goldberg, chemists at NIST and co-authors of the paper, cellulose and hemicellulose both present problems to would-be ethanol producers.

"Cellulose and hemicellulose are recalcitrant," Goldberg says. "They don't want to break down. It takes a long time for wood to rot. It even takes termites a long time to break wood down, and they're pretty good at it. Ethanol producers face the same problem. Because of the way these molecules are arranged, it's difficult to get access to the reactive centers in wood and other biomass. What we have done is to study some of the most basic reactions associated with the breakdown of these materials."

With enzymes to speed the reactions, the team used calorimetry and chromatography to measure the thermodynamic property values of several reactions associated with the breakdown of cellulosic and hemicellulosic substances. Because process design and bioengineering benefit from the availability of these values, the data obtained in this investigation represent a "small but significant step toward maximizing the efficiency of biomass utilization," Tewari says.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Y.B. Tewari, B.E. Lang, S.R. Decker and R.N. Goldberg. Thermodynamics of the hydrolysis reactions of 1,4--D-xylobiose, 1,4--D-xylotriose, D-cellobiose, and D-maltose. Journal of Chemical Thermodynamics, (in press) DOI: 10.1016/j.jct.2008.05.015

Cite This Page:

National Institute of Standards and Technology. "Improved Reaction Data Heat Up The Biofuels Harvest." ScienceDaily. ScienceDaily, 12 August 2008. <www.sciencedaily.com/releases/2008/08/080807112611.htm>.
National Institute of Standards and Technology. (2008, August 12). Improved Reaction Data Heat Up The Biofuels Harvest. ScienceDaily. Retrieved November 20, 2014 from www.sciencedaily.com/releases/2008/08/080807112611.htm
National Institute of Standards and Technology. "Improved Reaction Data Heat Up The Biofuels Harvest." ScienceDaily. www.sciencedaily.com/releases/2008/08/080807112611.htm (accessed November 20, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Thursday, November 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nations Pledge $9.3 Bn for Green Climate Fund

Nations Pledge $9.3 Bn for Green Climate Fund

AFP (Nov. 20, 2014) Nations meeting in Berlin pledge $9.3 billion (7.4 bn euros) for a climate fund to help poor countries cut emissions and prepare for global warming, just shy of a $10bn target. Duration: 00:46 Video provided by AFP
Powered by NewsLook.com
What's The Point Of Climate Conferences?

What's The Point Of Climate Conferences?

Newsy (Nov. 20, 2014) There's optimism about the U.N.'s climate conference in Paris next year, and if climate conferences past are anything to go off, that's notable. Video provided by Newsy
Powered by NewsLook.com
Giant Panda at Toronto Zoo Loves Somersaulting in the Snow

Giant Panda at Toronto Zoo Loves Somersaulting in the Snow

Buzz60 (Nov. 19, 2014) A giant panda at the Toronto Zoo named Da Mao is celebrating the northeast snowfall by playing and tumbling in the snow in his outdoor enclosure. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Scientists Find Out What's Been Killing Millions Of Starfish

Scientists Find Out What's Been Killing Millions Of Starfish

Newsy (Nov. 18, 2014) Scientists have found the cause of the biggest marine epidemic in history: the virus behind starfish wasting disease. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins