Featured Research

from universities, journals, and other organizations

Study Shows Continued Spread Of 'Dead Zones'; Lack Of Oxygen Now A Key Stressor On Marine Ecosystems

Date:
August 15, 2008
Source:
Virginia Institute of Marine Science
Summary:
A new study shows that the number of "dead zones" -- areas of seafloor with too little oxygen for most marine life -- has increased by a third between 1995 and 2007. Dead zones are now "the key stressor on marine ecosystems" and "rank with over-fishing, habitat loss, and harmful algal blooms as global environmental problems."

A dead zone also underlies much of the main-stem of Chesapeake Bay, each summer occupying about 40% of its area and up to 5% of its volume. The above map shows measurements of hypoxia in the bay in 2003.

A global study led by Professor Robert Diaz of the Virginia Institute of Marine Science, College of William and Mary, shows that the number of "dead zones"—areas of seafloor with too little oxygen for most marine life—has increased by a third between 1995 and 2007.

Diaz and collaborator Rutger Rosenberg of the University of Gothenburg in Sweden say that dead zones are now "the key stressor on marine ecosystems" and "rank with over-fishing, habitat loss, and harmful algal blooms as global environmental problems."

The study, which appears in the August 15 issue of the journal Science, tallies 405 dead zones in coastal waters worldwide, affecting an area of 95,000 square miles, about the size of New Zealand. The largest dead zone in the U.S., at the mouth of the Mississippi, covers more than 8,500 square miles, roughly the size of New Jersey.

Diaz began studying dead zones in the mid-1980s after seeing their effect on bottom life in a tributary of Chesapeake Bay near Baltimore. His first review of dead zones in 1995 counted 305 worldwide. That was up from his count of 162 in the 1980s, 87 in the 1970s, and 49 in the 1960s. He first found scientific reports of dead zones in the 1910s, when there were 4. Worldwide, the number of dead zones has approximately doubled each decade since the 1960s.

Diaz and Rosenberg write "There is no other variable of such ecological importance to coastal marine ecosystems that has changed so drastically over such a short time as dissolved oxygen."

Dead zones occur when excess nutrients, primarily nitrogen and phosphorus, enter coastal waters and help fertilize blooms of algae. When these microscopic plants die and sink to the bottom, they provide a rich food source for bacteria, which in the act of decomposition consume dissolved oxygen from surrounding waters. Major nutrient sources include fertilizers and the burning of fossil fuels.

Geologic evidence shows that dead zones were not "a naturally recurring event" in Chesapeake Bay or most other estuarine ecosystems, says Diaz. "Dead zones were once rare. Now they're commonplace. There are more of them in more places." The first dead zone in Chesapeake Bay was reported in the 1930s.

Scientists refer to water with too little oxygen for fish and other active organisms as "hypoxic." Diaz says that many ecosystems experience a progression in which periodic hypoxic events become seasonal and then, if nutrient inputs continue to increase, persistent. Earth's largest dead zone, in the Baltic Sea, experiences hypoxia year-round. Chesapeake Bay experiences seasonal, summertime hypoxia through much of its main channel, occupying about 40% of its area and up to 5% of its volume.

Diaz and Rosenberg note that hypoxia tends to be overlooked until it starts to affect organisms that people eat. A possible indicator of hypoxia's adverse effects on an economically important finfish species in Chesapeake Bay is the purported link between oxygen-poor bottom waters and a chronic outbreak of a bacterial disease among striped bass.

Several Bay researchers, including VIMS fish pathologist Wolfgang Vogelbein, hypothesize that the prevalence of mycobacteriosis among Bay stripers (>75%) is due to the stress they encounter when development of the Bay's summertime dead zone forces them from the cooler bottom waters they prefer into warmer waters near the Bay surface.

Diaz and Rosenberg's also point out a more fundamental effect of hypoxia: the loss of energy from the Bay's food chain. By precluding or stunting the growth of bottom-dwellers such as clams and worms, hypoxia robs their predators of an important source of nutrition.

Diaz and VIMS colleague Linda Schaffner estimate that Chesapeake Bay now loses about 10,000 metric tons of carbon to hypoxia each year, 5% of the Bay's total production of food energy. The Baltic Sea has lost 30% of its food energy—a condition that has contributed to a significant decline in its fisheries yields.

Diaz and Rosenberg say the key to reducing dead zones is "to keep fertilizers on the land and out of the sea." Diaz says that goal is shared by farmers concerned with the high cost of buying and applying nitrogen to their crops. "They certainly don't want to see their dollars flowing off their fields into the Bay," says Diaz. "Scientists and farmers need to continue working together to develop farming methods that minimize the transfer of nutrients from land to sea."


Story Source:

The above story is based on materials provided by Virginia Institute of Marine Science. Note: Materials may be edited for content and length.


Cite This Page:

Virginia Institute of Marine Science. "Study Shows Continued Spread Of 'Dead Zones'; Lack Of Oxygen Now A Key Stressor On Marine Ecosystems." ScienceDaily. ScienceDaily, 15 August 2008. <www.sciencedaily.com/releases/2008/08/080814154325.htm>.
Virginia Institute of Marine Science. (2008, August 15). Study Shows Continued Spread Of 'Dead Zones'; Lack Of Oxygen Now A Key Stressor On Marine Ecosystems. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2008/08/080814154325.htm
Virginia Institute of Marine Science. "Study Shows Continued Spread Of 'Dead Zones'; Lack Of Oxygen Now A Key Stressor On Marine Ecosystems." ScienceDaily. www.sciencedaily.com/releases/2008/08/080814154325.htm (accessed September 30, 2014).

Share This



More Plants & Animals News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Newsy (Sep. 30, 2014) A new study published by the World Wide Fund for Nature found that more than half of the world's wildlife population has declined since 1970. Video provided by Newsy
Powered by NewsLook.com
California University Designs Sustainable Winery

California University Designs Sustainable Winery

Reuters - US Online Video (Sep. 27, 2014) Amid California's worst drought in decades, scientists at UC Davis design a sustainable winery that includes a water recycling system. Vanessa Johnston reports. Video provided by Reuters
Powered by NewsLook.com
Argentina Worries Over Decline of Soybean Prices

Argentina Worries Over Decline of Soybean Prices

AFP (Sep. 27, 2014) The drop in price of soy on the international market is a cause for concern in Argentina, as soybean exports are a major source of income for Latin America's third largest economy. Duration: 01:10 Video provided by AFP
Powered by NewsLook.com
Mama Bear, Cubs Hang out in California Backyard

Mama Bear, Cubs Hang out in California Backyard

Reuters - US Online Video (Sep. 27, 2014) A mama bear and her two cubs climb trees, wrestle and take naps in the backyard of a Monrovia, California home. Vanessa Johnston reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins