Featured Research

from universities, journals, and other organizations

Biological Selenium Removal: Solution To Pollution?

Date:
September 16, 2008
Source:
Soil Science Society of America
Summary:
Unsafe levels of selenium, sometimes referred to as an "essential toxin," can be reduced by a microbiological treatment. With this method, microorganisms reduce selenate to the less-toxic elemental selenium, which can potentially be recovered from the process. An estimated 0.5 to 1 billion people worldwide suffer from selenium deficiency, even though many live near areas where levels of selenium have reached toxic levels.

Selenium has been referred to as an “essential toxin” due to the fact that it shows only a marginal line between the nutritious requirement and toxic effects upon exposure. The steep dose response curve due to bioaccumulation effects have lead to the characterization of selenium as a “time bomb” that can be fused by exceeding a narrow threshold concentration in ecosystems through anthropogenic activities.

Ironically, an estimated 0.5 to 1 billion people worldwide suffer from selenium deficiency, whereas areas of toxicity can be separated from selenium deficient areas by only 20 km.

The microbiological treatment of selenium - so called "dissimilatory metal reduction" - could supersede this problem, as selenium-reducing microorganisms are highly selective for selenate, reducing it to insoluble, less-toxic elemental selenium that can potentially be recovered from the process.

A study funded by the European Union, published in the September-October issue of the Journal of Environmental Quality, demonstrates that the biological treatment is indeed efficient for selenate reduction, and substantial amounts of selenate are converted to methylated selenium species or nano-sized elemental selenium particles. The emission of nano-sized selenium particles is problematic, as these can become bioavailable by direct assimilation or reoxidize to selenite and selenate.

Dimethlyselenide and dimethyldiselenide, two species with unknown ecotoxicological long-term effects, contributed substantially to selenium dissolved in the effluent. Their formation was induced by minor temperature changes during biological reduction, thus a careful process control might drastically increase removal success of existing biotreatment systems for selenium and is a prerequisite for successful removal in full scale applications.

Consequently, remediative systems aiming at minimizing ecotoxicological risks on the one hand and selenium recovery and reuse on the other hand should be implemented. Due to the "high volume - low concentration" character, no sustainable solution has been found yet to treat selenium-contaminated drainage waters originating from the San Joachin Valley, one of the agriculturally most productive areas of the US (a comprehensive report by the USGS is available at http://pubs.usgs.gov/pp/p1646/pdf/pp1646.pdf).


Story Source:

The above story is based on materials provided by Soil Science Society of America. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lenz et al. Biological Alkylation and Colloid Formation of Selenium in Methanogenic UASB Reactors. Journal of Environmental Quality, 2008; 37 (5): 1691 DOI: 10.2134/jeq2007.0630

Cite This Page:

Soil Science Society of America. "Biological Selenium Removal: Solution To Pollution?." ScienceDaily. ScienceDaily, 16 September 2008. <www.sciencedaily.com/releases/2008/09/080915121321.htm>.
Soil Science Society of America. (2008, September 16). Biological Selenium Removal: Solution To Pollution?. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2008/09/080915121321.htm
Soil Science Society of America. "Biological Selenium Removal: Solution To Pollution?." ScienceDaily. www.sciencedaily.com/releases/2008/09/080915121321.htm (accessed October 1, 2014).

Share This



More Health & Medicine News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pregnancy Spacing Could Have Big Impact On Autism Risks

Pregnancy Spacing Could Have Big Impact On Autism Risks

Newsy (Oct. 1, 2014) A new study says children born less than one year and more than five years after a sibling can have an increased risk for autism. Video provided by Newsy
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com
Insertable Cardiac Monitor

Insertable Cardiac Monitor

Ivanhoe (Oct. 1, 2014) A heart monitor the size of a paperclip that can save your life. The “Reveal Linq” allows a doctor to monitor patients with A-Fib on a continuous basis for up to 3 years! Video provided by Ivanhoe
Powered by NewsLook.com
Attacking Superbugs

Attacking Superbugs

Ivanhoe (Oct. 1, 2014) Two weapons hospitals can use to attack superbugs. Scientists in Ireland created a new gel resistant to superbugs, and a robot that can disinfect a room in minutes. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins