Featured Research

from universities, journals, and other organizations

Mice Missing 'Fear' Gene Slow To Protect Offspring

Date:
September 17, 2008
Source:
Rutgers University
Summary:
First, he discovered a gene that controls innate fear in animals. Now Rutgers geneticist Gleb Shumyatsky has shown that the same gene promotes "helicopter mom" behavior in mice. The gene, known as stathmin or oncoprotein 18, motivates female animals to protect newborn pups and interact cautiously with unknown peers. Shumyatsky's newest finding could enhance our understanding of human anxiety, including part-partum depression and borderline personality disorders.

First, he discovered a gene that controls innate fear in animals. Now Rutgers geneticist Gleb Shumyatsky has shown that the same gene promotes "helicopter mom" behavior in mice. The gene, known as stathmin or oncoprotein 18, motivates female animals to protect newborn pups and interact cautiously with unknown peers.

Related Articles


This "fear gene" is highly concentrated in the amygdala, a key region of the brain that deals with fear and anxiety. Shumyatsky's newest finding could enhance our understanding of human anxiety, including partpartum depression and borderline personality disorders.

Shumyatsky is an assistant professor of genetics in the School of Arts and Sciences at Rutgers, The State University of New Jersey.

Working with female mice genetically engineered to have an inactive stathmin gene, Shumyatsky demonstrated that these mutant mice were slow to retrieve pups placed outside the nest at corners of the cage. Females with normally active stathmin, however, were quick to bring similarly dispersed pups back to the nest. In another experiment, knockout mice chose to rebuild nests in more vulnerable open spaces instead of in safe corners, where normal mice typically build nests.

The abnormal behavior, concludes Shumyatsky, is based on the mouse's lack of fear – in this case, fear for the safety of pups in her care. Retrieving wayward pups is a behavior motivated by innate fear of attack by predators, a likely outcome for wild pups that stray from the relative safety of a nest.

"The human analog might be parents on a playground with their children when it starts to thunder," said Shumyatsky. "The typical parental behavior would be to gather their children and seek shelter. Parents who behave as these mice do would say, 'so they get a little wet, what's the problem'. That's definitely not the kind of helicopter parenting that newborn mice need to survive, and by extension, the species needs to survive."

Shumyatsky and postdoctoral research collaborators Guillaume Martel and Akinori Nishi published their findings this week in the Proceedings of the National Academy of Sciences (PNAS) Early Edition online, and will be published in an upcoming issue of the PNAS print edition.

He contrasts the new findings with his earlier "fear gene" discovery, which focused solely on personal risk. "We now show that having less fear can profoundly change important behaviors for the survival of progeny and the species," he said.

The researchers conducted several experiments to rule out other reasons why the mutant mice were slow to retrieve pups. They ruled out diminished olfactory perception, as both normal and mutant mice located missing pups with equal speed using their sense of smell.

Both types of mice also equally passed object perception tests. The researchers then ruled out non-fear motivation, as both types stockpiled food with the expected urgency.

The one experiment that clinched fear-based motivation as the factor was when they "reminded" mice of their parental responsibility by first putting pups in the nest for five minutes before dispersing them. In this case, the mutant mouse retrieved pups as quickly as the normal mouse. This ruled out the possibility that mutant mice didn't retrieve pups because they lacked a fundamental knowledge of how to do it.

In the social behavior experiment, the mutant mice showed much less cautious behavior to other peers than did the normal mice. "The equivalent human behavior would be if a person hugged every stranger she met," said Shumyatsky. "In fact, that's something that humans with amygdalar damage might do – they're very trusting."

The research adds further evidence to the amygdala's role in controlling innate fears – specifically, the basolateral complex (BLA) of the amygdala. The BLA's role in forming memories for learned fear has been well-established, but its role in regulating innate behaviors has been less well understood.

The research was supported by the Charles and Johanna Busch Memorial Fund, the New Jersey Governor's Council on Autism, the National Alliance for Research on Schizophrenia and Depression, and the Japan Society for the Promotion of Science


Story Source:

The above story is based on materials provided by Rutgers University. Note: Materials may be edited for content and length.


Cite This Page:

Rutgers University. "Mice Missing 'Fear' Gene Slow To Protect Offspring." ScienceDaily. ScienceDaily, 17 September 2008. <www.sciencedaily.com/releases/2008/09/080915174548.htm>.
Rutgers University. (2008, September 17). Mice Missing 'Fear' Gene Slow To Protect Offspring. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2008/09/080915174548.htm
Rutgers University. "Mice Missing 'Fear' Gene Slow To Protect Offspring." ScienceDaily. www.sciencedaily.com/releases/2008/09/080915174548.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins