Featured Research

from universities, journals, and other organizations

New Tool Helps Assess Risk Of Desertification

Date:
October 9, 2008
Source:
Madrimasd
Summary:
Researchers in Spain have established a method based on dynamic simulation models to define the indicators for the risk of desertification of a particular region in the long term, thus forecasting whether or not the current situation is sustainable.

Researchers from the Universidad Politécnica de Madrid (UPM) have established a method based on dynamic simulation models to define the indicators for the risk of desertification of a particular region in the long term, thus forecasting whether or not the current situation is sustainable.

Using a general model of desertification, researchers from the Escuela Técnica Superior de Ingenieros Agrónomos of the Universidad Politécnica de Madrid managed by Javier Ibáñez have developed indicators that predict the future state of an area and hence the sustainability of the current situation. This general desertification model is used as a virtual laboratory where it is possible to reproduce the different syndromes of desertification, such as overgrazing and overdrafting of aquifers.

Desertification has been described as the biggest environmental and socioeconomic problem faced by many countries all over the world. In arid regions, the cause of the problem is mainly the way the land is used. The definition that is most extended and that was approved by the United Nations in 1994 is that desertification is the degradation of land in arid, semi-arid, sub-humid and dry areas resulting from different factors such as climatic variations and human activities.

There are two ways to fight desertification. One of them consists in cancelling out the effects it causes, which is very expensive considering all the investments required to restore lost fertility to the ground. The other is to anticipate the problem, since during its initial stages it can still be managed and turned around. In this sense, the diverse existing methods seek to detect the early symptoms of degradation.

The traditional indicators, based on physical measurements such as plant density and erosion rates, are precise but have two serious inconveniences. Firstly, since they measure characteristics of desertification, they give information about an on going process without providing information about the long term result of such processes. The second drawback is that they often focus on very particular characteristics of the landscape, such as certain plant species, making these techniques hard to export to other territories.

The proposed tool aims to complete the information offered by the conventional indicators with simulations that would virtually reproduce the threatened environments, allowing for the development of specific indicators that would sound an alarm when critical thresholds representing long term desertification effects are reached.

In particular, the study carried out by the researchers from the Universidad Politécnica de Madrid consists of the development of a set of generic equations that represent different desertification syndromes. The model, constructed by means of systems dynamics, links physical and socioeconomic processes. This implies that phenomenons like aquifer salinisation or soil degradation can be studied along with the benefits for the farmers and their opportunity costs.

The procedure is born with the goal of estimating the risk of desertification in any part of the world, including regions where field data is non existent and it is for this purpose that it has been designed. Up to now, it has been applied to the field of Dalías (Almería) and its system of coastal aquifers, the grazing grounds of Lagadas (Greece) or the oases at Morocco and Tunisia.

Currently this method is being used to study the erosion of the olive plantations in Andalusia and their impact of livestock in grazing lands in Senegal.


Story Source:

The above story is based on materials provided by Madrimasd. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ibáñez et al. Assessing desertification risk using system stability condition analysis. Ecological Modelling, 2008; 213 (2): 180 DOI: 10.1016/j.ecolmodel.2007.11.017

Cite This Page:

Madrimasd. "New Tool Helps Assess Risk Of Desertification." ScienceDaily. ScienceDaily, 9 October 2008. <www.sciencedaily.com/releases/2008/10/081009144647.htm>.
Madrimasd. (2008, October 9). New Tool Helps Assess Risk Of Desertification. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2008/10/081009144647.htm
Madrimasd. "New Tool Helps Assess Risk Of Desertification." ScienceDaily. www.sciencedaily.com/releases/2008/10/081009144647.htm (accessed August 28, 2014).

Share This




More Earth & Climate News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Waves, Minor Flooding from Hurricane

Big Waves, Minor Flooding from Hurricane

AP (Aug. 27, 2014) — Thundering surf spawned by Hurricane Marie pounded the Southern California coast Wednesday, causing minor flooding in a low-lying beach town. High surf warnings were posted for Los Angeles County south through Orange County. (Aug. 27) Video provided by AP
Powered by NewsLook.com
Calif. Quake Underscores Need for Early Warning

Calif. Quake Underscores Need for Early Warning

AP (Aug. 26, 2014) — Researchers at UC Berkeley are testing a prototype of an earthquake early warning system that California is pursuing years after places like Mexico and Japan already have them up and running. (August 26) Video provided by AP
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) — Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Brazil Tries Genetically Modified Mosquitoes to Fight Dengue

Brazil Tries Genetically Modified Mosquitoes to Fight Dengue

AFP (Aug. 25, 2014) — A factory in the industrial state of Sao Paulo produces genetically modified mosquitoes to fight dengue, a deadly tropical disease more prevalent in Brazil than anywhere else in the world. Duration: 00:57 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins