Featured Research

from universities, journals, and other organizations

Dramatically Extending Lifetime Of Organic Solar Cells

Date:
October 15, 2008
Source:
Interuniversity Microelectronics Centre (IMEC)
Summary:
Scientists have developed a method to stabilize the nanomorphology of organic solar cells resulting in a lifetime improvement of at least a factor 10. With these stabilized solar cells, efficiencies were achieved comparable to state-of-the-art organic solar cells. This breakthrough paves the way to commercial organic solar cells with an operational lifetime of over 5 years and efficiencies of over 10%.

Transmission Electron Microscopy results for polymer/PCBM 1:1 active layers after degradation at 100C for 2 h, showing phase segregation for the Rieke P3HT polymer (left), but a stable morphology for the novel conjugated polymer (right).
Credit: IMEC

IMEC’s associated laboratory IMOMEC, located on the campus of the Hasselt University, developed a method to stabilize the nanomorphology of organic solar cells resulting in a lifetime improvement of at least a factor 10.

Related Articles


With these stabilized solar cells, efficiencies were achieved comparable to state-of-the-art organic solar cells. This breakthrough paves the way to commercial organic solar cells with an operational lifetime of over 5 years and efficiencies of over 10%.

The efficiency and operation of organic solar cells strongly depends on the nanomorphology of the active layer, i.e. on a stable mix of organic compounds that can trap the light’s energy and transport it to an electric contact. IMEC already reported such cells based on P3HT:PCBM with efficiencies near 5%. But to date, the lifetime of these cells is far too short for commercial applications, for which 5 years is seen as a minimum.

Under long term operation, all solar cells based on an intimate mixing of organic semiconductors deteriorate. This is due to segregation of the mixture whereby the compounds tend to separate into different phases and consequently reduce the efficient conversion of light into electricity. IMEC has shown before that this phase segregation is related to the mobility of the organic polymer and that fixation of the nanomorphology of the polymers could result in a prolonged operational lifetime.

IMEC/IMOMEC has now introduced a new method and new conjugated polymers to stabilize the nanomorphology of the active layer making it far more robust to phase segregation under prolonged operation. Experiments on bulk heterojunction organic solar cells based on this new material showed no degradation of the efficiency after more than 100 hours whereas reference cells degraded already after a few hours. This means that a lifetime improvement of at least a factor 10 can be obtained. And the cells achieved efficiencies near 4% which is comparable to state-of-the-art.

Future research targets further refinement of the method by optimizing the chemical structures of the conjugated polymers.


Story Source:

The above story is based on materials provided by Interuniversity Microelectronics Centre (IMEC). Note: Materials may be edited for content and length.


Cite This Page:

Interuniversity Microelectronics Centre (IMEC). "Dramatically Extending Lifetime Of Organic Solar Cells." ScienceDaily. ScienceDaily, 15 October 2008. <www.sciencedaily.com/releases/2008/10/081014160813.htm>.
Interuniversity Microelectronics Centre (IMEC). (2008, October 15). Dramatically Extending Lifetime Of Organic Solar Cells. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2008/10/081014160813.htm
Interuniversity Microelectronics Centre (IMEC). "Dramatically Extending Lifetime Of Organic Solar Cells." ScienceDaily. www.sciencedaily.com/releases/2008/10/081014160813.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins