Featured Research

from universities, journals, and other organizations

Paper Mill Waste May Be Just Right For Reclaiming Mineland

Date:
November 9, 2008
Source:
USDA/Agricultural Research Service
Summary:
Paper mill waste can safely be applied at a rate three times higher than the typical rate in Ohio, to reclaim soils of surface-coal mined areas.

Adding more paper mill waste can better reclaim mine soil without further harm to downstream water quality.
Credit: Photo courtesy of the U.S. Geological Survey

Paper mill waste can safely be applied at a rate three times higher than the typical rate in Ohio, to reclaim soils of surface-coal mined areas.

Related Articles


Agricultural Research Service (ARS) soil scientist Martin J. Shipitalo found that a 300-ton-per-acre application rate had many benefits, and did not result in major additional negative effects on runoff water quality compared to the standard 100-ton-per-acre rate. Shipitalo is at the ARS North Appalachian Experimental Watershed in Coshocton, Ohio.

This is the first research project to determine the amount of paper mill sludge byproduct that can safely be applied to land without harming downstream water quality.

The project also involved the two Ohio agencies that must grant special approval for the 300-ton-per-acre rate: the Ohio Environmental Protection Agency and the Ohio Department of Natural Resources. And it involved representatives of the paper mill, mining and land reclamation industries.

Shipitalo and colleagues applied sludge from a paper mill to plots on steep slopes in southeast Ohio that had been recently surface-mined. Approximately 10 weeks after the application, grass was planted on the slopes.

The application of paper mill sludge at both rates greatly reduced runoff and erosion from the plots, particularly during the period before grass was planted. But the higher application rate still reduced soil loss 8-fold after the grass was planted and the land had stabilized. Both rates reduced runoff 3- to 6-fold in that same post-planting period.

The high rate of paper mill sludge application increased soil carbon levels, soil pH and calcium to a greater extent than the lower rate. These improvements in soil quality may contribute to more persistent increases in plant growth and continued reductions in runoff and erosion. Also, the large reduction in runoff and erosion could result in lower reclamation costs by reducing the size of required sediment ponds.

The only negative effect of the byproduct was a temporary reduction--up to 10 weeks--of oxygen in the runoff water, but total runoff was reduced.

A paper on this research will be published in the November-December 2008 issue of the Journal of Environmental Quality.


Story Source:

The above story is based on materials provided by USDA/Agricultural Research Service. Note: Materials may be edited for content and length.


Cite This Page:

USDA/Agricultural Research Service. "Paper Mill Waste May Be Just Right For Reclaiming Mineland." ScienceDaily. ScienceDaily, 9 November 2008. <www.sciencedaily.com/releases/2008/10/081031214322.htm>.
USDA/Agricultural Research Service. (2008, November 9). Paper Mill Waste May Be Just Right For Reclaiming Mineland. ScienceDaily. Retrieved March 1, 2015 from www.sciencedaily.com/releases/2008/10/081031214322.htm
USDA/Agricultural Research Service. "Paper Mill Waste May Be Just Right For Reclaiming Mineland." ScienceDaily. www.sciencedaily.com/releases/2008/10/081031214322.htm (accessed March 1, 2015).

Share This


More From ScienceDaily



More Earth & Climate News

Sunday, March 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Whale-Watching Scientists Spot Baby Orca

Whale-Watching Scientists Spot Baby Orca

AP (Feb. 28, 2015) — Researchers following endangered killer whales spotted a baby orca off the coast of Washington state, the third birth documented this winter but still leaving the population dangerously low. (Feb. 28) Video provided by AP
Powered by NewsLook.com
Bridge Collapses Due to Flooding in Bolivia

Bridge Collapses Due to Flooding in Bolivia

Reuters - News Video Online (Feb. 28, 2015) — Heavy rain and flooding sweep through parts of Bolivia causing damage and leaves more than 2,000 people homeless. Sophia Soo reports. Video provided by Reuters
Powered by NewsLook.com
Death Toll from Afghan Avalanches Tops 200

Death Toll from Afghan Avalanches Tops 200

AFP (Feb. 27, 2015) — More than 200 people have been killed in a series of avalanches triggered by heavy snowfall in Afghanistan. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
France, Philippines Call for Agreement on Climate Change

France, Philippines Call for Agreement on Climate Change

Reuters - News Video Online (Feb. 27, 2015) — The presidents of France and the Philippines issue a joint appeal for a binding agreement on climate change. Katie Sargent reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins