Featured Research

from universities, journals, and other organizations

Novel Target For Therapeutics Against Staph Infection

Date:
December 3, 2008
Source:
Public Library of Science
Summary:
Researchers have uncovered how a bacterial pathogen interacts with the blood coagulation protein fibrinogen to cause methicillin-resistant Staphylococcus aureus infections, a finding that could aid in developing therapeutics against the potentially deadly disease.

Researchers at the Texas A&M Health Science Center Institute of Biosciences and Technology, and the University of Edinburgh have uncovered how a bacterial pathogen interacts with the blood coagulation protein fibrinogen to cause methicillin-resistant Staphylococcus aureus (MRSA) infections, a finding that could aid in developing therapeutics against the potentially deadly disease. 

Related Articles


Once occurring more commonly in healthcare facilities, but now affecting segments of the general population, MRSA is a bacterial pathogen responsible for a range of diseases from mild skin infection to life-threatening sepsis. Even with antibiotics, these infections can still be fatal.

Senior author Magnus Höök, Ph.D. and his colleagues carried out biochemical and structural studies to determine the binding mechanism of clumping factor A (ClfA), a surface protein that plays an important role in the pathogenesis of S. aureus. The group found that ClfA binds to the blood-clotting protein fibrinogen (Fg) at a site that is also responsible for inducing platelet activation and thrombosis (clot inside a blood vessel).

The results show significant structural differences in how staphylococcal and platelet receptor proteins recognize fibrinogen. By exploiting this difference in recognition, the researchers show that agents could be designed that inhibit the ClfA–Fg interaction but do not interfere with the interaction of Fg with the platelet integrin, therefore avoiding unwanted side effects on the circulatory system.


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ganesh et al. A Structural Model of the Staphylococcus aureus ClfA–Fibrinogen Interaction Opens New Avenues for the Design of Anti-Staphylococcal Therapeutics. PLoS Pathogens, 2008; 4 (11): e1000226 DOI: 10.1371/journal.ppat.1000226

Cite This Page:

Public Library of Science. "Novel Target For Therapeutics Against Staph Infection." ScienceDaily. ScienceDaily, 3 December 2008. <www.sciencedaily.com/releases/2008/11/081127204344.htm>.
Public Library of Science. (2008, December 3). Novel Target For Therapeutics Against Staph Infection. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2008/11/081127204344.htm
Public Library of Science. "Novel Target For Therapeutics Against Staph Infection." ScienceDaily. www.sciencedaily.com/releases/2008/11/081127204344.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) — As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) — Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) — Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) — According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins