Featured Research

from universities, journals, and other organizations

Metabolic Reactions: Less Is More In Single-celled Organisms

Date:
December 16, 2008
Source:
Northwestern University
Summary:
A new study of four single-celled organisms had some surprising results. The organisms, which differed in size and complexity of each organism's genome, used the same number of biochemical reactions when optimizing growth. And, contrary to what you might expect, each, to efficiently perform metabolic tasks such as growing fast or converting sugars to ethanol, tended to use only a small fraction of the biochemical reactions available to them in the metabolic network.

Adilson Motter led research that shows organisms spontaneously silence a large number of metabolic reactions when optimizing growth.
Credit: Image courtesy of Northwestern University

All single-celled organisms are not alike. Or are they?

A Northwestern University study has found a surprising similarity among four quite different organisms. The simplest organism, a bacterium called H. pylori, uses the same number of biochemical reactions (around 300) as yeast, the largest, most complex organism of the group, when optimizing growth.

The other surprising finding is that to optimize, or efficiently perform, metabolic tasks, such as growing fast or converting sugars to ethanol, the organisms tend to use only a small fraction of the biochemical reactions available to them in the metabolic network. Less efficient, or suboptimal, behavior tends to use a much larger number of reactions.

The results contribute a new understanding of the interplay between metabolic network activity and biological function and indicate there is a general behavior that is common to diverse organisms.

Little is known about what the individual parts of the cell do in relation to the whole organism. These new findings -- that many of the parts, or chemical reactions, are shut down spontaneously for the cell to perform optimally -- provide an area of focus to scientists who want to control cell behavior by manipulating one or more biochemical reactions.

The knowledge may help researchers genetically engineer cells or treat sick cells. Yeast, for example, is used to produce ethanol, so to increase production the research indicates how shutting down some of the cell's biochemical reactions could force the cell to produce ethanol more efficiently. The identification of drug targets and the development of new therapies also often require manipulating molecular reactions to produce a desirable outcome.

"Each organism is a very versatile chemical factory," said Motter, who is also a member of the Northwestern Institute on Complex Systems. "It is clear that inactivating some reactions can force other reactions to be active. We want to better understand the cell's spontaneous shutdown of parts so we can induce it ourselves."

The research team also found that when a cell is perturbed (when there is a change in the nutrients available or a gene is shut down), the number of biochemical reactions it uses increases immediately, putting it in a sub-optimal state. The cell seems lost for a while, but then it adapts to the new conditions. The number of reactions decreases, and the cell returns to an optimal state.

"A reaction becomes inactive and triggers a cascade that makes other reactions inactive until you have several hundreds or even thousands of inactive reactions," said Motter. "This is the network analogue of sculpting: in order for the desired behavior to manifest itself, specific parts of the systems have to be suppressed. In this analogy, the expression of a whole-cell objective would not be possible were it not for the pattern shaped by the absent or inactive parts in the bulk of the cellular network."

"Why do organisms have reactions they don't use? Presumably so they have the flexibility to adapt to different conditions. One optimization situation will engage a certain set of reactions, while another situation will require a different set. It remains to be demonstrated, however, whether different conditions alone can justify the presence of all available reactions. The fact that this question is yet to be answered makes the entire problem even more attractive," Motter said.

Motter and his team used computational results to re-interpret and explain specific recent experimental results. First they gathered extensive experimental information on the metabolic networks of four different single-celled organisms: three bacteria (H. pylori, S. aureus and E. coli) and yeast (S. cerevisiae). Then the researchers built general quantitative models of the organisms that allowed them to predict cellular behavior. With those models, the researchers conducted mathematical analyses and computer experiments, simulating the organism and its metabolic function under optimal and non-optimal conditions.

They observed that for all four organisms in a typical non-optimal state, all utilizable reactions in the metabolic network, with a few exceptions, were active. In contrast, when the four organisms were growing at their optimal rate, each of them spontaneously silenced a large number of metabolic reactions. The number of active reactions, around 300, was the same for all four, despite differences in the size and complexity of each organism's genome and metabolic network. And the number stayed around 300 for a variety of quite different optimization scenarios.

"Mathematical abstraction of the problem suggests that spontaneous shutdown may not be limited to metabolic networks," said Nishikawa, who led the mathematical part of the effort. "What appears to be essential for this phenomenon is that a complex network that is under constraints and locally in balance is 'trying' to optimize its function. There are other important systems, like transportation networks, where the same type of analyses could be useful."


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Adilson Motter, Takashi Nishikawa and Natali Gulbahce. Spontaneous Reaction Silencing in Metabolic Optimization. PLoS Computational Biology, Dec 5, 2008

Cite This Page:

Northwestern University. "Metabolic Reactions: Less Is More In Single-celled Organisms." ScienceDaily. ScienceDaily, 16 December 2008. <www.sciencedaily.com/releases/2008/12/081205094616.htm>.
Northwestern University. (2008, December 16). Metabolic Reactions: Less Is More In Single-celled Organisms. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2008/12/081205094616.htm
Northwestern University. "Metabolic Reactions: Less Is More In Single-celled Organisms." ScienceDaily. www.sciencedaily.com/releases/2008/12/081205094616.htm (accessed August 1, 2014).

Share This




More Plants & Animals News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pyrenees Orphan Bear Cub Gets Brand New Home

Pyrenees Orphan Bear Cub Gets Brand New Home

AFP (Aug. 1, 2014) The discovery of a bear cub in the Pyrenees mountains made headlines in April 2014. Despire several attempts to find the animal's mother, the cub remained alone. Now, the Pyrenees Conservation Foundation has constructed an enclosure. Duration: 00:31 Video provided by AFP
Powered by NewsLook.com
Ebola Vaccine Might Be Coming, But Where's It Been?

Ebola Vaccine Might Be Coming, But Where's It Been?

Newsy (Aug. 1, 2014) Health officials are working to fast-track a vaccine — the West-African Ebola outbreak has killed more than 700. But why didn't we already have one? Video provided by Newsy
Powered by NewsLook.com
Study Links Certain Birth Control Pills To Breast Cancer

Study Links Certain Birth Control Pills To Breast Cancer

Newsy (Aug. 1, 2014) Previous studies have made the link between birth control and breast cancer, but the latest makes the link to high-estrogen oral contraceptives. Video provided by Newsy
Powered by NewsLook.com
Rare Whale Fossil Pulled from Calif. Backyard

Rare Whale Fossil Pulled from Calif. Backyard

AP (Aug. 1, 2014) A rare whale fossil has been pulled from a Southern California backyard. The 16- to 17-million-year-old baleen whale fossil is one of about 20 baleen whale fossils known to exist. (Aug. 1) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins