Featured Research

from universities, journals, and other organizations

Smaller, Brighter Probe Tailored For Molecular Imaging And Tumor Targeting Created

Date:
January 10, 2009
Source:
Memorial Sloan-Kettering Cancer Center
Summary:
Researchers have developed a new generation of microscopic particles for molecular imaging, constituting one of the first promising nanoparticle platforms that may be readily adapted for tumor targeting and treatment in the clinic.

Researchers have developed a new generation of microscopic particles for molecular imaging, constituting one of the first promising nanoparticle platforms that may be readily adapted for tumor targeting and treatment in the clinic.

According to the investigators at Memorial Sloan-Kettering Cancer Center (MSKCC) and Cornell University, these particles are biologically safe, stable, and small enough to be easily transported across the body's structures and efficiently excreted through the urine. It is the first time that all of these properties have been successfully engineered on a single-particle platform, called "C dots," in order to optimize the biological behavior and imaging properties of nanoparticles for use in a wide array of biomedical and life science applications. The work will be published in the January 2009 issue of Nano Letters.

"Highly sensitive and specific probes and molecular imaging strategies are critical to ensure the earliest possible detection of a tumor and timely response to treatment," said the study's senior author, Michelle Bradbury, MD/PhD, a physician-scientist specializing in molecular imaging and neuroradiology at MSKCC. "Our findings may now be translated to the investigation of tumor targeting and treatment in the clinic, with the goal of ultimately helping physicians to better tailor treatment to a patient's individual tumor."

Imaging experiments in mice conducted at MSKCC showed that this new particle platform, or "probe," can be molecularly customized to target surface receptors or other molecules that are expressed on tumor surfaces or even within tumors, and then imaged to evaluate various biological properties of the tumor, including the extent of a tumor's blood vessels, cell death, treatment response, and invasive or metastatic spread to lymph nodes and distant organs.

"Importantly, the ability to define patients that express certain types of molecules on their tumor surfaces will serve as an initial step towards improving treatment management and individualizing medical care," said Dr. Bradbury.

Many of the contrast agents or probes currently used in medical imaging (such as GdDTPA for magnetic resonance imaging) are not specific to any particular tumor type. According to the study's authors, the information gained from imaging tumors targeted with C dots may ultimately assist physicians in defining tumor borders for surgery, determining the extent of a tumor's spread, mapping lymph node disease, and improving real-time visualization of small vascular beds, anatomic channels, and neural structures during surgery.

Created at Cornell University and modified at MSKCC, C dots have been optimized for use in optical and PET imaging and can be tailored to any particle size without adversely impacting its fluorescent properties. For the first time, researchers were able to make them small enough (in the 5 nanometer range) to remain in the bloodstream for a reasonable amount of time and be efficiently excreted by the kidneys. Researchers were also able to increase their brightness by 300 percent, enabling cancer cells to be tracked for longer periods of time in the body.

Their inner "core" is encapsulated in a shell of silica, a nontoxic element naturally found in fruits, grains, and vegetables, and contains optical dyes that emit light at longer wavelengths, resulting in an overall improvement in image quality compared to dyes that are commercially available.

Investigators also found that adding another type of molecular coating, called pegylation, protected C dots from being recognized by the body as foreign substances, thereby effectively extending the circulation time to improve tumor-targeting capabilities.

By comparison, first generation nanoparticles, called quantum dots (Q dots), offer excellent brightness and provide good contrast during imaging, but their clinical potential is limited by their large size and risk of toxicity.

The authors conclude that while the next generation of nanoparticles holds much clinical promise, more work needs to be done before C dots are approved for use in humans.

The following investigators contributed to this collaborative work, which was supported by a grant from the Clinical and Translation Science Center at Weill Cornell Medical College and the Cornell Nanobiotechnology Center: Andrew A. Burns (lead author), Erik Herz and Ulrich Wiesner of Cornell University; Jelena Vider, Oula Penate-Medina, and Steven M. Larson of MSKCC; and Hooisweng Ow and Martin Baumgart of Hybrid Silica Technologies.


Story Source:

The above story is based on materials provided by Memorial Sloan-Kettering Cancer Center. Note: Materials may be edited for content and length.


Cite This Page:

Memorial Sloan-Kettering Cancer Center. "Smaller, Brighter Probe Tailored For Molecular Imaging And Tumor Targeting Created." ScienceDaily. ScienceDaily, 10 January 2009. <www.sciencedaily.com/releases/2008/12/081222221545.htm>.
Memorial Sloan-Kettering Cancer Center. (2009, January 10). Smaller, Brighter Probe Tailored For Molecular Imaging And Tumor Targeting Created. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2008/12/081222221545.htm
Memorial Sloan-Kettering Cancer Center. "Smaller, Brighter Probe Tailored For Molecular Imaging And Tumor Targeting Created." ScienceDaily. www.sciencedaily.com/releases/2008/12/081222221545.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins