Featured Research

from universities, journals, and other organizations

Tilting At Wind Farms

Date:
January 8, 2009
Source:
Inderscience Publishers
Summary:
A way to make wind power smoother and more efficient that exploits the inertia of a wind turbine rotor could help solve the problem of wind speed variation, according to new research.

A way to make wind power smoother and more efficient that exploits the inertia of a wind turbine rotor could help solve the problem of wind speed variation, according to research published in the International Journal of Power Electronics.

Related Articles


Wind power is being touted as a clean and inexhaustible energy source across the globe, but the wind is intermittent and so the power output of wind farms can be variable. Proposed measures to smooth these power fluctuations usually involve the installation of units of batteries or capacitors to store electricity on good days and release their energy on still days or at times when wind speeds are too high for system stability. Technology to smooth the power supply and prevent blackouts due to the tripping of safety switches when electricity frequency deviates wildly is also essential.

Despites its deficiencies, a report from the US Department of Energy suggests that installed wind energy capacity could reach 300 gigawatts by 2030 to meet a fifth of the US electricity demand.

Now, Asghar Abedini, Goran Mandic and Adel Nasiri at the Department of Electrical Engineering and Computer Science, Power Electronics and Motor Drives Laboratory, University of Wisconsin-Milwaukee, have devised a solution to the electricity grid susceptibility to changes in wind speed.

The researchers have devised a novel control method that can mitigate power fluctuations using the inertia of the wind turbine's rotor as an energy storage component. Simply put, they have created a braking control algorithm that adjusts the rotor speed so that when incoming wind power is greater than the average power, the rotor is allowed to speed up so that it can store the excess energy as kinetic energy rather than generating electricity. This energy is then released when the wind power falls below average.

This approach, the team explains, precludes the need for external energy storage facilities such as capacitors and the additional infrastructure and engineering they entail. Their method also captures wind energy more effectively and so improves the overall efficiency of wind farming potentially reducing the number of turbines required at any given site.


Story Source:

The above story is based on materials provided by Inderscience Publishers. Note: Materials may be edited for content and length.


Journal Reference:

  1. Abedini et al. Wind power smoothing using rotor inertia aimed at reducing grid susceptibility. International Journal of Power Electronics, 2008; 1 (2): 227 DOI: 10.1504/IJPELEC.2008.022352

Cite This Page:

Inderscience Publishers. "Tilting At Wind Farms." ScienceDaily. ScienceDaily, 8 January 2009. <www.sciencedaily.com/releases/2009/01/090107092724.htm>.
Inderscience Publishers. (2009, January 8). Tilting At Wind Farms. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2009/01/090107092724.htm
Inderscience Publishers. "Tilting At Wind Farms." ScienceDaily. www.sciencedaily.com/releases/2009/01/090107092724.htm (accessed October 25, 2014).

Share This



More Earth & Climate News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins