Featured Research

from universities, journals, and other organizations

Pathogenic Microorganisms And Phenotypic Noise: Combat Zone Reconnaissance

Date:
January 20, 2009
Source:
ETH Zurich
Summary:
Phenotypic noise is a novel concept in biology that explains the division of labor among pathogens. Researchers have now developed a new method that simplifies the process by which the genes carrying the pathogenic properties are found.

“Noisy” Salmonellae in the mouse intestine: the bacteria are green, the cell nuclei of the mouse cells blue and the actin brush-border of the small intestine is red.
Credit: Image copyrights: B.Stecher/W.-D. Hardt/ETH Zόrich

Phenotypic noise is a novel concept in biology that explains the division of labour among pathogens. ETH Zurich researchers have now developed a new method that simplifies the process by which the genes carrying the pathogenic properties are found.

Related Articles


“Noisy” Salmonellae in the mouse intestine: the bacteria are green, the cell nuclei of the mouse cells blue and the actin brush-border of the small intestine is red. (Image copyrights: B.Stecher/W.-D. Hardt/ETH Zόrich)

ETH Zurich researchers led by Martin Ackermann and Wolf-Dietrich Hardt recently described a remarkable new biological concept: the division of labour via phenotypic noise. This concept is based on the observation that cell divisions of Salmonellae form two specialised groups that perform quite different functions even though they are genetically homogeneous. These groups form when, during cell division, the proteins from the parent cell are distributed randomly rather than uniformly among the daughter clones. This determines how the latter behave.

This phenotypic noise benefits the Salmonellae greatly. One sub-set of the pathogens can penetrate into intestinal cells, where they are recognised and destroyed by the immune system. The other, which lack the properties of the intruders, wait as it were in ambush in the intestinal lumen until the inflammatory host’s immune response induced by the suicidal siblings has punched holes in the intestinal flora, so they can multiply and gain a foothold.

New method finds noisy genes

Whereas in an initial study the researchers focused mainly on a single gene and its products, they have now developed a method with which they can examine the genes of the whole organism. Its purpose is to find genes that are particularly “noisy” and are responsible for the germ’s pathogenicity. The new study was led by doctoral student Nikki Freed.

The new method, which has just been published in the online journal PLoS Genetics, enabled the scientists to filter out two Salmonella genes which regulate the structure of the Salmonella’s flagellae, thus controlling their pathogenicity. The method also allows other prokaryotic or eukaryotic systems to be checked for genes that cause noise.

Targeting coliform bacteria

This is why the researchers want to extend their studies to other bacteria to find out whether phenotypic noise is more widespread than is assumed. They now plan to check Escherichia coli to find out whether this bacterium also employs the division of labour via phenotypic noise. The scientists hope that this will give more clarity as to whether phenotypic noise has established itself as a general principle in biological systems.

Martin Ackermann can also imagine that their discoveries might affect the theory of the origin of multicellular organisms. Expert opinion up to now has been that cells with the same function initially congregated and subsequently combined to develop the multicellular organism’s specialised functions – i.e. its “organs”. Phenotypic noise could turn this theory on its head. It could be that specialised cells could first of all come into being and might then congregate to form a heterogeneous association with various functions, representing the preliminary stage of a multicellular organism. The ETH Zurich professor says, “If we are successful in backing up this hypothesis, we could make a major step in the quest to explain the origin of multicellular organisms.”


Story Source:

The above story is based on materials provided by ETH Zurich. Note: Materials may be edited for content and length.


Journal Reference:

  1. Freed et al. A Simple Screen to Identify Promoters Conferring High Levels of Phenotypic Noise. PLoS Genetics, 2008; 4 (12): e1000307 DOI: 10.1371/journal.pgen.1000307

Cite This Page:

ETH Zurich. "Pathogenic Microorganisms And Phenotypic Noise: Combat Zone Reconnaissance." ScienceDaily. ScienceDaily, 20 January 2009. <www.sciencedaily.com/releases/2009/01/090119113008.htm>.
ETH Zurich. (2009, January 20). Pathogenic Microorganisms And Phenotypic Noise: Combat Zone Reconnaissance. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2009/01/090119113008.htm
ETH Zurich. "Pathogenic Microorganisms And Phenotypic Noise: Combat Zone Reconnaissance." ScienceDaily. www.sciencedaily.com/releases/2009/01/090119113008.htm (accessed October 25, 2014).

Share This



More Plants & Animals News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) — Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) — Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) — One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) — Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins