Featured Research

from universities, journals, and other organizations

Simplicity Is Crucial To Design Optimization At Nanoscale

Date:
February 16, 2009
Source:
Massachusetts Institute of Technology, Department of Civil and Environmental Engineering
Summary:
Researchers who study the structure of protein-based materials to learn the key to their lightweight and robust strength have discovered that the particular arrangement of proteins that produces the sturdiest product is not the arrangement with the most built-in redundancy or the most complicated pattern. Instead, the optimal arrangement of proteins in the rope-like structures they studied is a repeated pattern of two stacks of four bundled alpha-helical proteins.

This figures illustrates the different arrangements of alpha-helical protein filaments and their schematic representation in the Buehler/Ackbarow model.
Credit: Image / Markus Buehler

MIT researchers who study the structure of protein-based materials with the aim of learning the key to their lightweight and robust strength have discovered that the particular arrangement of proteins that produces the sturdiest product is not the arrangement with the most built-in redundancy or the most complicated pattern.

Instead, the optimal arrangement of proteins in the rope-like structures they studied is a repeated pattern of two stacks of four bundled alpha-helical proteins.

This composition of two repeated hierarchies (stacks and bundles) provides great strength—the ability to withstand mechanical pressure without giving way—and great robustness—the ability to perform mechanically, even if flawed. Because the alpha-helical protein serves as the building block of many common materials, understanding the properties of those materials has been the subject of intense scientific inquiry since the protein's discovery in the 1940s.

In a paper published in the Jan. 27 online issue of Nanotechnology, Markus Buehler and Theodor Ackbarow describe a model of the protein’s performance, based on molecular dynamics simulations. With their model they tested the strength and robustness of four different combinations of eight alpha-helical proteins: a single stack of eight proteins, two stacks of four bundled proteins, four stacks of two bundled proteins, and double stacks of two bundled proteins. Their molecular models replicate realistic molecular behavior, including hydrogen bond formation in the coiled spring-like alpha-helical proteins.

“The traditional way of designing materials is to consider properties at the macro level, but a more efficient way of materials’ design is to play with the structural makeup at the nanoscale,” said Buehler, the Esther and Harold E. Assistant Professor in the Department of Civil and Environmental Engineering. “This provides a new paradigm in engineering that enables us to design a new class of materials.”

More and more frequently, natural protein materials are being used as inspiration for the design of synthetic materials that are based on nanowires and carbon nanotubes, which can be made to be much stronger than biological materials. Buehler and Ackbarow's work demonstrates that by rearranging the same number of nanoscale elements into hierarchies, the performance of a material can be radically changed. This could eliminate the need to invent new materials for different applications.

In a follow-up study, Buehler and CEE graduate students Zhao Qin and Steve Cranford ran similar tests using more than 16,000 elements instead of eight. They found that 98 percent of the randomly arranged rope-like structures did not meet the optimal performance level of the self-assembled natural molecules, which made up the other 2 percent of the structures. The most successful of those again utilized the bundles of four alpha-helical proteins.

That analysis shows that random arrangements of elements typically lead to inferior performance, and may explain why many engineered materials are not yet capable of combining disparate properties such as robustness and strength.

“Only a few specific nanostructured arrangements provide the basis for optimal material performance, and this must be incorporated in the material design process,” said Buehler.

This work is funded by the Army Research Office, a National Science Foundation CAREER Award, and the Air Force Office of Scientific Research. Ackbarow, a graduate student at the Max Planck Institute of Colloids and Interfaces in Potsdam, Germany, was supported in this work by the German National Academic Foundation, the Hamburg Foundation for research studies abroad and the Dr. Juergen Ulderup Foundation.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology, Department of Civil and Environmental Engineering. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology, Department of Civil and Environmental Engineering. "Simplicity Is Crucial To Design Optimization At Nanoscale." ScienceDaily. ScienceDaily, 16 February 2009. <www.sciencedaily.com/releases/2009/02/090204161850.htm>.
Massachusetts Institute of Technology, Department of Civil and Environmental Engineering. (2009, February 16). Simplicity Is Crucial To Design Optimization At Nanoscale. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2009/02/090204161850.htm
Massachusetts Institute of Technology, Department of Civil and Environmental Engineering. "Simplicity Is Crucial To Design Optimization At Nanoscale." ScienceDaily. www.sciencedaily.com/releases/2009/02/090204161850.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com
Boeing Ups Outlook on 52% Profit Jump

Boeing Ups Outlook on 52% Profit Jump

Reuters - Business Video Online (July 23, 2014) Commercial aircraft deliveries rose seven percent at Boeing, prompting the aerospace company to boost full-year profit guidance- though quarterly revenues missed analyst estimates. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Car Market on the Rebound?

Europe's Car Market on the Rebound?

Reuters - Business Video Online (July 23, 2014) Daimler kicks off a round of second-quarter earnings results from Europe's top carmakers with a healthy set of numbers - prompting hopes that stronger sales in Europe will counter weakness in emerging markets. Hayley Platt reports. Video provided by Reuters
Powered by NewsLook.com
9/11 Commission Members Warn of Terror "fatigue" Among American Public

9/11 Commission Members Warn of Terror "fatigue" Among American Public

Reuters - US Online Video (July 22, 2014) Ten years after releasing its initial report, members of the 9/11 Commission warn of the "waning sense of urgency" in combating terrorists attacks. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins