Featured Research

from universities, journals, and other organizations

Simplicity Is Crucial To Design Optimization At Nanoscale

Date:
February 16, 2009
Source:
Massachusetts Institute of Technology, Department of Civil and Environmental Engineering
Summary:
Researchers who study the structure of protein-based materials to learn the key to their lightweight and robust strength have discovered that the particular arrangement of proteins that produces the sturdiest product is not the arrangement with the most built-in redundancy or the most complicated pattern. Instead, the optimal arrangement of proteins in the rope-like structures they studied is a repeated pattern of two stacks of four bundled alpha-helical proteins.

This figures illustrates the different arrangements of alpha-helical protein filaments and their schematic representation in the Buehler/Ackbarow model.
Credit: Image / Markus Buehler

MIT researchers who study the structure of protein-based materials with the aim of learning the key to their lightweight and robust strength have discovered that the particular arrangement of proteins that produces the sturdiest product is not the arrangement with the most built-in redundancy or the most complicated pattern.

Related Articles


Instead, the optimal arrangement of proteins in the rope-like structures they studied is a repeated pattern of two stacks of four bundled alpha-helical proteins.

This composition of two repeated hierarchies (stacks and bundles) provides great strength—the ability to withstand mechanical pressure without giving way—and great robustness—the ability to perform mechanically, even if flawed. Because the alpha-helical protein serves as the building block of many common materials, understanding the properties of those materials has been the subject of intense scientific inquiry since the protein's discovery in the 1940s.

In a paper published in the Jan. 27 online issue of Nanotechnology, Markus Buehler and Theodor Ackbarow describe a model of the protein’s performance, based on molecular dynamics simulations. With their model they tested the strength and robustness of four different combinations of eight alpha-helical proteins: a single stack of eight proteins, two stacks of four bundled proteins, four stacks of two bundled proteins, and double stacks of two bundled proteins. Their molecular models replicate realistic molecular behavior, including hydrogen bond formation in the coiled spring-like alpha-helical proteins.

“The traditional way of designing materials is to consider properties at the macro level, but a more efficient way of materials’ design is to play with the structural makeup at the nanoscale,” said Buehler, the Esther and Harold E. Assistant Professor in the Department of Civil and Environmental Engineering. “This provides a new paradigm in engineering that enables us to design a new class of materials.”

More and more frequently, natural protein materials are being used as inspiration for the design of synthetic materials that are based on nanowires and carbon nanotubes, which can be made to be much stronger than biological materials. Buehler and Ackbarow's work demonstrates that by rearranging the same number of nanoscale elements into hierarchies, the performance of a material can be radically changed. This could eliminate the need to invent new materials for different applications.

In a follow-up study, Buehler and CEE graduate students Zhao Qin and Steve Cranford ran similar tests using more than 16,000 elements instead of eight. They found that 98 percent of the randomly arranged rope-like structures did not meet the optimal performance level of the self-assembled natural molecules, which made up the other 2 percent of the structures. The most successful of those again utilized the bundles of four alpha-helical proteins.

That analysis shows that random arrangements of elements typically lead to inferior performance, and may explain why many engineered materials are not yet capable of combining disparate properties such as robustness and strength.

“Only a few specific nanostructured arrangements provide the basis for optimal material performance, and this must be incorporated in the material design process,” said Buehler.

This work is funded by the Army Research Office, a National Science Foundation CAREER Award, and the Air Force Office of Scientific Research. Ackbarow, a graduate student at the Max Planck Institute of Colloids and Interfaces in Potsdam, Germany, was supported in this work by the German National Academic Foundation, the Hamburg Foundation for research studies abroad and the Dr. Juergen Ulderup Foundation.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology, Department of Civil and Environmental Engineering. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology, Department of Civil and Environmental Engineering. "Simplicity Is Crucial To Design Optimization At Nanoscale." ScienceDaily. ScienceDaily, 16 February 2009. <www.sciencedaily.com/releases/2009/02/090204161850.htm>.
Massachusetts Institute of Technology, Department of Civil and Environmental Engineering. (2009, February 16). Simplicity Is Crucial To Design Optimization At Nanoscale. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2009/02/090204161850.htm
Massachusetts Institute of Technology, Department of Civil and Environmental Engineering. "Simplicity Is Crucial To Design Optimization At Nanoscale." ScienceDaily. www.sciencedaily.com/releases/2009/02/090204161850.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins