Featured Research

from universities, journals, and other organizations

Malaria Parasite Zeroes In On Molecule To Enhance Its Survival

Date:
March 2, 2009
Source:
Princeton University
Summary:
Scientists have found that the parasite that causes malaria breaks down an important amino acid in its quest to adapt and thrive within the human body. By depleting this substance called arginine, the parasite may trigger a more critical and deadlier phase of the disease. The work may point the way to better treatments.

A team of researchers from Princeton University and the Drexel University College of Medicine has found that the parasite that causes malaria breaks down an important amino acid in its quest to adapt and thrive within the human body. By depleting this substance called arginine, the parasite may trigger a more critical and deadlier phase of the disease.

The scientists believe that shedding light on this poorly understood aspect of malaria metabolism has given them new insights on the interactions between the parasite and its human hosts. The work also may point the way to better treatments.

"The more we know about the parasite's metabolic network, the more intelligent we can be about targeting therapies that will cure malaria," said Kellen Olszewski, a graduate student at Princeton University and first author of the Feb. 18 Cell Host & Microbe paper describing the work. The project was led by Manuel Llinás, an assistant professor of molecular biology and the Lewis-Sigler Institute for Integrative Genomics at Princeton.

As a central part of the research, the scientists created a "metabolomic" profile of the parasite, Plasmodium falciparum. Metabolomics is a new field that aims to analyze metabolic processes by simultaneously measuring the levels of all of the more than 500 core metabolites that make up an organism's "metabolic network." A metabolite is a chemical involved in metabolism, the process by which an organism takes up nutrients from the environment and converts them to energy and the molecular building blocks that cells use to grow. Amino acids, sugars, nucleotides and vitamins are all metabolites.

To conduct the study, the team used a mass spectrometry-based method developed in the neighboring laboratory of Joshua Rabinowitz, an assistant professor of chemistry at Princeton and another author on the paper. Mass spectrometry is a highly sensitive technique that identifies chemicals based on their size and electrical charge.

The researchers were interested in seeing how the concentrations of metabolites in parasite-infected human red blood cells change over a single 48-hour "generation" of parasite growth. Scanning the data, the scientists noted that arginine levels dramatically dipped by the end of one 48-hour cycle.

"The parasite destroys this amino acid specifically and preferentially over all other amino acids," Olszewski said.

Follow-up experiments showed that the parasite doesn't break down arginine in order to grow, suggesting that this process serves some secondary function that helps P. falciparum proliferate within the human body. Arginine is an essential fuel for the human body's immune system, which uses it to produce a molecule called nitric oxide that is highly toxic to foreign organisms. The parasite-led attack on arginine may be an attempt by the parasite to "switch off" a human immune function that might threaten its survival, the researchers said.

Scientists are interested in studying the metabolism of P. falciparum to understand how organisms adapt to a parasitic lifestyle. Understanding this is important because many of the drugs used to treat malaria successfully in the past have targeted some aspect of the parasite's metabolism.

"Designing the next generation of anti-malarial drugs will likely require a detailed knowledge of the 'weak points' in the parasite's metabolic network," Llinás said.

According to the World Health Organization, some 350 to 500 million people are infected with malaria every year by mosquitos carrying one of the four human malaria parasites, P. falciparum, P. vivax, P. malariae or P. ovale. The P. falciparum infections are by far the most deadly, killing more than 1 million people each year, mainly young children and pregnant women. The disease, which can incapacitate a victim for several weeks, also imposes a massive social and economic burden. People living in endemic areas can be infected up to several times a year. About 60 percent of the cases of malaria worldwide and more than 80 percent of malaria deaths occur in sub-Saharan Africa.

Other authors on the paper include: Daniel Wilinski, a research specialist in the Llinás lab; and Joanne Morrisey, James Burns and Akhil Vaidya, all of the Center for Molecular Parasitology at the Drexel University College of Medicine.

The research was supported by the Burroughs Wellcome Fund; the National Institutes of Health; the National Science Foundation; and the Arnold and Mabel Beckman Foundation.


Story Source:

The above story is based on materials provided by Princeton University. Note: Materials may be edited for content and length.


Cite This Page:

Princeton University. "Malaria Parasite Zeroes In On Molecule To Enhance Its Survival." ScienceDaily. ScienceDaily, 2 March 2009. <www.sciencedaily.com/releases/2009/02/090219105320.htm>.
Princeton University. (2009, March 2). Malaria Parasite Zeroes In On Molecule To Enhance Its Survival. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2009/02/090219105320.htm
Princeton University. "Malaria Parasite Zeroes In On Molecule To Enhance Its Survival." ScienceDaily. www.sciencedaily.com/releases/2009/02/090219105320.htm (accessed September 21, 2014).

Share This



More Plants & Animals News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: San Diego Zoo Welcomes Cheetah Cubs

Raw: San Diego Zoo Welcomes Cheetah Cubs

AP (Sep. 20, 2014) — The San Diego Zoo has welcomed two Cheetah cubs to its Safari Park. The nearly three-week-old female cubs are being hand fed and are receiving around the clock care. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Chocolate Museum Opens in Brussels

Chocolate Museum Opens in Brussels

AFP (Sep. 19, 2014) — Considered a "national heritage" in Belgium, chocolate now has a new museum in Brussels. In a former chocolate factory, visitors to the permanent exhibition spaces, workshops and tastings can discover derivatives of the cocoa bean. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) — The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) — A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins