Featured Research

from universities, journals, and other organizations

Ants Can Learn To Forage On One-way Trails

Date:
April 11, 2009
Source:
Public Library of Science
Summary:
Ant trails fascinate children and scientists alike. With so many ants traveling in both directions, meeting and contacting one another, carrying their loads and giving the impression that they have a sense of urgency and duty, they pose the following question: how do they organize themselves? A new study may have some answers.

Ant trails fascinate children and scientists alike. With so many ants traveling in both directions, meeting and contacting one another, carrying their loads and giving the impression that they have a sense of urgency and duty, they pose the following question: how do they organize themselves? A new study may have some answers.

Pedro Leite Ribeiro and his colleagues at the University of Sao Paulo, Brazil, believe they have found another clue to the processes underlying the collective organization of leaf-cutter ants. In the new study, the researchers show that ants can work around a difficult obstacle that prevents them from returning home via the same route they used to reach a food supply. Unable to return to the nest on their two-way trail (which has most likely been in use for millions of years) they set up a new one-way system, taking two separate unidirectional roads between nest and food.

The researchers used two incomplete bridges to connect the nests to the foraging ground (see related figure, below). The ants had to fall from the end of the outgiong bridge in order to reach the food and then, as they couldn't jump back up onto the end of the bridge, they had to use the inbound bridge, and, at its end, fall onto the nest.

"It's a behavioral check valve device," said Dr Leite Ribeiro. "The foraging ground would become a cul de sac if the ants could not abandon their 'retrace your steps' orientation system."

But they did abandon it. Moreover, they not only managed to go back home, but also continued to use the apparatus and gradually established a routine, foraging effectively for months, showing that they can go on using it indefinitely. As they reach the end of the outgoing bridge, they typically hesitate briefly and then, as more and more ants cluster on the edge, they will fall onto the foraging ground, where they will cut leaves or pick up grains and set out for the returning bridge, which leads them back to the nest area. Random route finding was carefully ruled out by statistical analysis of the direction taken by the ants after leaf cutting. The laboratory experiments were corroborated by a test in the field.

"The next step was to find out how they did it," said Dr Leite Ribeiro.

When using their normal, chemically-marked two-way trails, foraging ants must reverse their orientation responses once they have picked up a food load to take home (or after they decide to go home empty-handed, which often happens). If they traveled east from the nest to the food, they will have to head west to get back. The pheromones they use to mark the way do not tell them to which end of the trail they are heading.

Whichever directional cues the ants may be using, a directional reversal is required when the decision to return is made, just like a sailor, a scout boy or anyone driving or walking in town. Therefore, in order to solve the problem, the studied ants had to switch off these "go backwards" behaviors and instead go forwards to find the new way home.

Initially, the researchers thought the ants might be giving some intricate chemical solution to the problem, but first they had to rule out any possible role of vision. "Their tiny eyes do not seem to be capable of anything except light detection, but as that might be sufficient, we decided to test them in total darkness," said Dr Leite Ribeiro.

And they failed. Further testing led the scientists to believe that the ants cancel their orientation reversal and use light direction to follow the new trail.

The ants' environment is fraught with so many changes and irregularities that any rigid orientation system would not cope and they have therefore evolved a system that meets the complex demands made by collective achievements.


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ribeiro et al. Ants Can Learn to Forage on One-Way Trails. PLoS ONE, 2009; 4 (4): e5024 DOI: 10.1371/journal.pone.0005024

Cite This Page:

Public Library of Science. "Ants Can Learn To Forage On One-way Trails." ScienceDaily. ScienceDaily, 11 April 2009. <www.sciencedaily.com/releases/2009/03/090331201520.htm>.
Public Library of Science. (2009, April 11). Ants Can Learn To Forage On One-way Trails. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2009/03/090331201520.htm
Public Library of Science. "Ants Can Learn To Forage On One-way Trails." ScienceDaily. www.sciencedaily.com/releases/2009/03/090331201520.htm (accessed July 24, 2014).

Share This




More Plants & Animals News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Dogs Appear To Become Jealous Of Owners' Attention

Dogs Appear To Become Jealous Of Owners' Attention

Newsy (July 23, 2014) A U.C. San Diego researcher says jealousy isn't just a human trait, and dogs aren't the best at sharing the attention of humans with other dogs. Video provided by Newsy
Powered by NewsLook.com
Professor Creates Site Revealing Where People's Cats Live

Professor Creates Site Revealing Where People's Cats Live

Newsy (July 23, 2014) ​It's called I Know Where Your Cat Lives, and you can keep hitting the "Random Cat" button to find more real cats all over the world. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins