Featured Research

from universities, journals, and other organizations

Cooperative Behavior Meshes With Evolutionary Theory

Date:
April 7, 2009
Source:
Massachusetts Institute of Technology
Summary:
One of the questions raised by evolutionary theory is how cooperative behavior, which benefits other members of a species at a cost to the individual, came to exist. If only the fittest survive, genes for a behavior that benefits everybody in a population should not last and cooperative behavior should die out. Now researchers have used game theory to understand one solution yeast use to get around this problem.

Physics postdoctoral fellow Jeff Gore, left, and physics professor Alexander van Oudenaarden are harvesting yeast cells for experiments exploring the evolution of cooperation.
Credit: Photo / Donna Coveney

One of the perplexing questions raised by evolutionary theory is how cooperative behavior, which benefits other members of a species at a cost to the individual, came to exist.

Related Articles


Cooperative behavior has puzzled biologists because if only the fittest survive, genes for a behavior that benefits everybody in a population should not last and cooperative behavior should die out, says Jeff Gore, a Pappalardo postdoctoral fellow in MIT's Department of Physics.

Gore is part of a team of MIT researchers that has used game theory to understand one solution yeast use to get around this problem. The team's findings, published in the April 6 online edition of Nature, indicate that if an individual can benefit even slightly by cooperating, it can survive even when surrounded by individuals that don't cooperate.

In short, the study offers a concrete example of how cooperative behaviors can be compatible with evolutionary theory.

Yeast may seem unlikely subjects for a study of cooperative behavior, but in fact they are perfectly suited to such studies, says Gore. Unlike humans, yeast have no emotions or thoughts that interfere with rational decision-making; their actions are solely driven by their genetic response to the environment.

"You can apply game theory to biological interactions and in some ways it's more broadly applicable than it is in humans," says Gore, the paper's lead author.

Game theory, traditionally employed by economists and military strategists, uses mathematics to predict individuals' behavior in certain situations.

Cooperators and cheaters

Working with MIT physics professor Alexander van Oudenaarden, also an author of the paper, Gore developed an experimental setup involving yeast sucrose metabolism. Sucrose is not yeast's preferred food source, but they will metabolize it if no glucose is available. To do so, they must secrete an enzyme called invertase, which breaks sucrose into smaller sugars that the yeast can absorb.

Much of that sugar diffuses away and is freely available to other yeast cells in the environment. In this scenario, yeast that secrete invertase are known as cooperators, while those that don't secrete invertase and instead consume the simple sugars produced by others are called cheaters.

If all of these simple sugars diffused away, with no preferential access to the yeast that produced it, then it would always be better to cheat, and the cooperators would die out.

The researchers observed that cooperating yeast have preferential access to approximately 1 percent of the sucrose they produce. That benefit outweighs the cost of helping others, allowing them to successfully compete against cheaters.

In addition, no matter the initial starting numbers of yeast in a given population, the microbes always come into an equilibrium state, with both cooperators and cheaters present. "It doesn't matter where you start. You always end up with equilibrium," says Gore.

This suggests that the yeast are playing what game theorists call a snowdrift game. The name of the game comes from a situation in which two drivers are trapped in cars behind a snowdrift. Each one can choose to get out and clear a path or stay put. If one driver does not shovel, the other must.

The best option is to "cheat" by staying in the car while the other driver shovels. However, the worst-case scenario occurs if both drivers cheat and no one gets home. Therefore, the best strategy is always the opposite of your opponent's strategy.

The same rules apply to the cheating and cooperating yeast: Like the driver who grudgingly gets out and shovels so that both she and her fellow motorist — snug inside his car — may continue on their journeys, the yeast who cooperate do so because there is a slight benefit for themselves. However, when most of the yeast are cooperating, it becomes advantageous for some individuals to cheat, and vice versa, which allows co-existence between cheaters and cooperators to arise.

Studies have shown that in the wild, yeast carry different numbers of copies of the invertase gene. This genetic diversity in the wild may be similar to the long-term coexistence of cooperators and cheaters observed in the laboratory, says Gore.

Hyun Youk, an MIT graduate student in physics, is also an author of the paper. This research was funded by the National Institutes of Health and the National Science Foundation.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jeff Gore, Hyun Youk & Alexander van Oudenaarden. Snowdrift game dynamics and facultative cheating in yeast. Nature, 2009; DOI: 10.1038/nature07921

Cite This Page:

Massachusetts Institute of Technology. "Cooperative Behavior Meshes With Evolutionary Theory." ScienceDaily. ScienceDaily, 7 April 2009. <www.sciencedaily.com/releases/2009/04/090406132056.htm>.
Massachusetts Institute of Technology. (2009, April 7). Cooperative Behavior Meshes With Evolutionary Theory. ScienceDaily. Retrieved March 6, 2015 from www.sciencedaily.com/releases/2009/04/090406132056.htm
Massachusetts Institute of Technology. "Cooperative Behavior Meshes With Evolutionary Theory." ScienceDaily. www.sciencedaily.com/releases/2009/04/090406132056.htm (accessed March 6, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, March 6, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Praying Mantis Looks Long Before It Leaps

Praying Mantis Looks Long Before It Leaps

Reuters - Innovations Video Online (Mar. 5, 2015) Slowed-down footage of the leaps of praying mantises show the insect&apos;s extraordinary precision, say researchers. Video provided by Reuters
Powered by NewsLook.com
Octopus Grabs Camera and Turns It Around On Photographer

Octopus Grabs Camera and Turns It Around On Photographer

Buzz60 (Mar. 5, 2015) A photographer got the shot of a lifetime, or rather an octopus did, when it grabbed the camera and turned it around to take an amazing picture of the photographer. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com
Ringling Bros. Eliminating Elephant Acts

Ringling Bros. Eliminating Elephant Acts

AP (Mar. 5, 2015) The Ringling Bros. and Barnum & Bailey Circus is ending its iconic elephant acts. The circus&apos; parent company, Feld Entertainment, told the AP exclusively that the acts will be phased out by 2018 over growing public concern about the animals. (March 5) Video provided by AP
Powered by NewsLook.com
Raw: Tourists Visit Rare Grey Whales in Mexico

Raw: Tourists Visit Rare Grey Whales in Mexico

AP (Mar. 4, 2015) Once nearly extinct, grey whales now migrate in their thousands to Mexico&apos;s Vizcaino reserve in Baja California, in search of warmer waters to mate and give birth. Tourists flock to the reserve to see the whales, measuring up to 49 feet long. (March 4) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins