Featured Research

from universities, journals, and other organizations

'Natural' Nitrogen-fixing Bacteria Protect Soybeans From Aphids

Date:
April 20, 2009
Source:
Penn State
Summary:
An invasion of soybean aphids poses a problem for soybean farmers requiring application of pesticides, but entomologists think a careful choice of nitrogen-fixing bacteria may provide protection against the sucking insects.

Soybean plants interact with many different organisms in the field. Soybean aphids (upper inset) are invasive insect pests of the above ground portion of the plant, while nitrogen-fixing bacteria (lower inset) colonize the roots inside nodules and provide the plant with much needed nitrogen.
Credit: Jennifer Dean

An invasion of soybean aphids poses a problem for soybean farmers requiring application of pesticides, but a team of Penn State entomologists thinks a careful choice of nitrogen-fixing bacteria may provide protection against the sucking insects.

Related Articles


Soybeans are legumes, plants that can have a symbiotic relationship with nitrogen-fixing bacteria -- rhizobia -- and therefore do not need additional nitrogen fertilizer. Each type of legume -- peas, beans, lentils, alfalfa -- have their own rhizobia.

"Soybeans are from Asia and so there were originally no nitrogen-fixing bacteria that would colonize soybeans in U.S. soils," said Consuelo De Moraes, associate professor of entomology. "The rhizobia had to be transferred here."

The soybean aphid is also not native to North America. This pest only began to infest soybean fields about 10 years ago but are now fully established pests requiring pesticide applications to avoid the loss of as much as 40 percent of the crop. The researchers investigated the relationship between the type of rhizobia colonizing soybean plants and the plants' infestation with the aphids.

"Our results demonstrate that plant–rhizobia interactions influence plant resistance to insect herbivores and that some rhizobia strains confer greater resistance to their mutualist partners than do others," the researchers report in the journal Plant and Soil online.

They looked at soybean plants inoculated with the rhizobia provided by the inoculant company; without rhizobia, but with added nitrogen fertilizer, and by existing rhizobia in the soil.

"The bacteria that were used initially to inoculate the first crops of soybeans are growing wild in the soil now," said Mark C. Mescher. "They are now considered "naturally occurring" and are different from the inoculants purchased with the soybean seeds."

They become natural because they change through generations of contact with other rhizobia. While they may not provide as much nitrogen to the plant as commercial types, the trade off between optimal growth and heavy insect damage may still be worthwhile.

"In most cases, the inoculant companies provide rhizobia for inoculation that gives plants the maximum yield," said Jennifer M. Dean, postdoctoral fellow in entomology. "Their rhizobia are highly competitive against naturally occurring nitrogen-fixing bacteria. The inoculant companies treat the natural rhizobia almost as a pest."

Because of this, soybeans almost uniformly incorporate the specially developed rhizobia rather than the natural ones. However, the researchers found that the plants associated with the naturally occurring rhizobia had lower aphid densities than either the artificially fertilized plants or the plants inoculated with commercial rhizobia. They also found the same level of nitrogen in both soybean plants inoculated with natural rhizobia and those inoculated with commercial varieties.

"This is the first time anyone has shown how different strains of rhizobia can effect herbivory," said De Moraes. "This may be another tool to use to protect plants from insect herbivory. It may also be applicable to other legumes."

The researchers do not yet know what the natural nitrogen-fixing bacteria do to repel aphids.

"It is really exciting to see that the nitrogen producing rhizobia can be protective," said Dean. "Next we want to isolate rhizobia strains from the fields and look for the specific mechanism of how they repel the aphids."

The National Science Foundations, David and Lucile Packard Foundation, Beckman Foundation and a Du Pont young investigator award.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "'Natural' Nitrogen-fixing Bacteria Protect Soybeans From Aphids." ScienceDaily. ScienceDaily, 20 April 2009. <www.sciencedaily.com/releases/2009/04/090414110818.htm>.
Penn State. (2009, April 20). 'Natural' Nitrogen-fixing Bacteria Protect Soybeans From Aphids. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2009/04/090414110818.htm
Penn State. "'Natural' Nitrogen-fixing Bacteria Protect Soybeans From Aphids." ScienceDaily. www.sciencedaily.com/releases/2009/04/090414110818.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
The Hottest Food Trends for 2015

The Hottest Food Trends for 2015

Buzz60 (Dec. 17, 2014) Urbanspoon predicts whicg food trends will dominate the culinary scene in 2015. Mara Montalbano (@maramontalbano) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins