Featured Research

from universities, journals, and other organizations

Orthodoxy On How Macrophages Kill Bacteria Overturned With New Study

Date:
April 28, 2009
Source:
University of Illinois at Urbana-Champaign
Summary:
For decades, microbiologists assumed that macrophages, immune cells that can engulf and poison bacteria and other pathogens, killed microbes by damaging their DNA. A new study disproves that.

For decades, microbiologists assumed that macrophages, immune cells that can engulf and poison bacteria and other pathogens, killed microbes by damaging their DNA. A new study from the University of Illinois disproves that.

The study, published in the journal PLoS One, shows that macrophages focus their most potent poisons, known as reactive oxygen species (ROS), on targets outside the cytoplasm.

Macrophages are voracious eaters that "swallow" cellular debris and invading organisms. They kill microbes with ROS. All aerobic cells inadvertently produce ROS that can, if left unchecked, damage DNA and other cellular components and cause cell death.

Bacteria and animal cells contain special enzymes, called superoxide dismutases, which neutralize an important ROS, called superoxide.

Macrophages have harnessed these lethal compounds, dumping large quantities of superoxide onto engulfed bacteria to kill them.

Although macrophages direct ROS against invading bacteria, Salmonella typhimurium, the microbe used in the study, is adept at evading these defenses. The most virulent strains of S. typhimurium can survive and even propagate inside macrophages, eventually emerging to infect more cells.

"It's been assumed that reactive oxygen species kill the bacteria by going into the cytoplasm and causing DNA damage," said medical microbiology professor James Slauch, who led the study. "You can find this idea over and over again in review articles and many immunological textbooks, but with no real data to back it up."

To test this hypothesis, Slauch and graduate student Maureen Craig looked at the superoxide dismutases that are part of the bacterial defense against ROS. There are two such enzymes in the cytoplasm of S. typhimurium, called SodA and SodB, and another, SodC, in the periplasm, the space between the bacteria's inner and outer membranes.

One way to understand the role of an enzyme is to see what happens when it is absent, so the researchers looked at mutant S. typhimurium that had the genes for SodA, SodB, or both enzymes, deleted. Deleting the gene for SodA seemed to make no difference, but the SodB mutants were less able to survive and cause disease in a mouse. The double mutants were even more impaired. They were much, much less likely to survive in the mouse than bacteria with only the SodB gene missing. These findings "offer genetic proof" that both enzymes "are involved in the same process," Slauch said.

The fact that the bacterial mutants were less likely to survive in a mouse did not prove, however, that the missing enzymes were protecting the bacteria from ROS generated in the mouse macrophages, Slauch said.

"You get the same result if you grow these mutants in the laboratory in aerobic conditions," he said.

Furthermore, the SodA/SodB mutant bacteria were profoundly weakened – even in a mouse that was unable to produce the potent ROS superoxide in its macrophages. These results suggest that the superoxide dismutases in the bacterial cytoplasm are most likely protecting the bacterium from its own, naturally occurring ROS, Slauch said.

In contrast, deleting the gene encoding the periplasmic superoxide dismutase, SodC, conferred the same defect regardless of whether the cytoplasmic SodA/SodB were present or absent, showing that its function is independent of the cytoplasm.

Moreover, strains lacking SodC were impaired only in the presence of superoxide produced in macrophages; there was no impairment in laboratory media or in mice lacking the ability to make superoxide.

This suggests that the superoxide and other reactive oxygen species are not making it from the macrophage into the bacterial cytoplasm, Slauch said.

"We conclude from all this data that the most sensitive target of ROS in the macrophages lies outside the cytoplasm," Slauch said. "We don't know what that target is, but it's clearly not in the cytoplasm."


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Urbana-Champaign. "Orthodoxy On How Macrophages Kill Bacteria Overturned With New Study." ScienceDaily. ScienceDaily, 28 April 2009. <www.sciencedaily.com/releases/2009/04/090427121633.htm>.
University of Illinois at Urbana-Champaign. (2009, April 28). Orthodoxy On How Macrophages Kill Bacteria Overturned With New Study. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2009/04/090427121633.htm
University of Illinois at Urbana-Champaign. "Orthodoxy On How Macrophages Kill Bacteria Overturned With New Study." ScienceDaily. www.sciencedaily.com/releases/2009/04/090427121633.htm (accessed July 24, 2014).

Share This




More Plants & Animals News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dogs Appear To Become Jealous Of Owners' Attention

Dogs Appear To Become Jealous Of Owners' Attention

Newsy (July 23, 2014) A U.C. San Diego researcher says jealousy isn't just a human trait, and dogs aren't the best at sharing the attention of humans with other dogs. Video provided by Newsy
Powered by NewsLook.com
Professor Creates Site Revealing Where People's Cats Live

Professor Creates Site Revealing Where People's Cats Live

Newsy (July 23, 2014) ​It's called I Know Where Your Cat Lives, and you can keep hitting the "Random Cat" button to find more real cats all over the world. Video provided by Newsy
Powered by NewsLook.com
Stone Fruit Listeria Scare Causes Sweeping Recall

Stone Fruit Listeria Scare Causes Sweeping Recall

Newsy (July 22, 2014) The Wawona Packing Company has issued a voluntary recall on the stone fruit it distributes due to a possible Listeria outbreak. Video provided by Newsy
Powered by NewsLook.com
Michigan Plant's Goal: Flower and Die

Michigan Plant's Goal: Flower and Die

AP (July 22, 2014) An 80-year-old agave plant, which is blooming for the first and only time at a University of Michigan conservatory, will die when it's done (July 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins