Featured Research

from universities, journals, and other organizations

New And Improved Tomato Analyzer

Date:
May 4, 2009
Source:
American Society for Horticultural Science
Summary:
Tomatoes come in a variety of sizes and shapes, making them the perfect subject to test shape-analyzing software. The Tomato Analyzer is "rapidly becoming the standard for fruit morphological characterizations," according to a new study.

This improved software measures fruit shapes and eccentricity.
Credit: Photo by Esther van der Knaap

Tomatoes come in a variety of sizes and shapes, making them the perfect subject to test shape-analyzing software. The Tomato Analyzer is "rapidly becoming the standard for fruit morphological characterizations," according to a study led by Marin Talbot Brewer of The Ohio State University's Department of Horticulture and Crop Science.

Morphology studies the form and structure of organisms. Software such as the Tomato Analyzer aids in morphological research by providing accurate and objective measurements of fruit shape. The analysis is also more efficient for large numbers of subjects and can detect traits that are extremely difficult to quantify manually. The Tomato Analyzer uses mathematical descriptors to quantify various shape features based on the boundary of the fruit.

Morphometrics studies the quantitative analysis of the shape and size of a biological form using the position of and distance between landmarks. This method has been used to study variations, classifications, and evolutionary analyses, as well as genetic studies of animals and insects. Morphometric analysis is less biased and depends less on manual manipulation, but the results are abstract quantities. The Tomato Analyzer's results are more descriptive because they actually measure angles or include ratios that better explain the fruit shape. However, the Tomato Analyzer provides both methods in the same application, allowing the researcher to select the option that best suits the project's needs.

A main objective of the study was to investigate the quantitative trait loci (QTL), which are parts of the genetic code that control fruit shape. The QTL as determined by morphometric analysis and boundary analysis were then compared. A new set of measurements was added to the Tomato Analyzer software to calculate the area of the pericarp, septum, and placenta. These are internal segments of the fruit that help to explain the shape more thoroughly than the exterior silhouette alone.

In the 'Sausage' species of tomato, two loci were identified as controlling more than 50% of the internal shape index, which gives the tomato its elongated or "pear" shape. Visual observation supported that the software accurately measured the degree of pear shape. Additional tests to determine proximal end angle, the shape of the fruit nearest the stem, showed comparable results between the two methods. This adds to the software's versatility of measurements for researchers.

QTLs detected in 'Sausage' and 'Rio Grande' varieties of tomato overlapped significantly. Though most, if not all, of the QTL controlling fruit shape and size were identified using the Tomato Analyzer applications, morphometric analyses are an efficient way to investigate the various sizes and shapes of fruit. Because both types of analysis are available in the Tomato Analyzer, the software allows researchers to quickly note morphological variation with the morphometrics function and then delve more deeply into the details using the attribute function.


Story Source:

The above story is based on materials provided by American Society for Horticultural Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Gonzalo, Maria Jose, Brewer, Marin Talbot, Anderson, Claire, Sullivan, David, Gray, Simon, van der Knaap, Esther Tomato Fruit Shape Analysis Using Morphometric and Morphology Attributes Implemented in Tomato Analyzer Software Program. Tomato Fruit Shape Analysis Using Morphometric and Morphology Attributes Implemented in Tomato Analyzer Software Program. J. Amer. Soc. Hort. Sci., 2009 134: 77-87 [link]

Cite This Page:

American Society for Horticultural Science. "New And Improved Tomato Analyzer." ScienceDaily. ScienceDaily, 4 May 2009. <www.sciencedaily.com/releases/2009/05/090504094438.htm>.
American Society for Horticultural Science. (2009, May 4). New And Improved Tomato Analyzer. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2009/05/090504094438.htm
American Society for Horticultural Science. "New And Improved Tomato Analyzer." ScienceDaily. www.sciencedaily.com/releases/2009/05/090504094438.htm (accessed August 21, 2014).

Share This




More Plants & Animals News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) — A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Unsustainable Elephant Poaching Killed 100K In 3 Years

Unsustainable Elephant Poaching Killed 100K In 3 Years

Newsy (Aug. 20, 2014) — Poachers have killed 100,000 elephants between 2010 and 2012, as the booming ivory trade takes its toll on the animals in Africa. Video provided by Newsy
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins