Featured Research

from universities, journals, and other organizations

HIV-1's 'Hijacking Mechanism' Pinpointed

Date:
June 15, 2009
Source:
McGill University
Summary:
Researchers may have found a chink in the armor of the human immunodeficiency virus type 1 (HIV-1), the microorganism which causes AIDS.

Researchers at McGill University and the affiliated Lady Davis Institute for Medical Research at Montreal's Jewish General Hospital – along with colleagues at the University of Manitoba and the University of British Columbia – may have found a chink in the armour of the human immunodeficiency virus type 1 (HIV-1), the microorganism which causes AIDS. They have pinpointed the key cellular machinery co-opted by HIV-1 to hijack the human cell for its own benefit. 

Once a cell is infected with HIV-1, activation of the virus's gene generates a large HIV-1 RNA molecule known as the RNA genome. This is then transported from the cell nucleus to the inner surface of the plasma membrane. The RNA genome can produce both structural proteins and enzymes, but once it arrives at the plasma membrane it can also assemble into new copies of the virus that actually bud out of the cell. Dr. Andrew J. Mouland and his colleagues have discovered how the RNA genome gets transported – or trafficked – from the nucleus to the plasma membrane.

"There is a highway inside the human cell," explained Dr. Mouland, Associate Professor at McGill's Departments of Medicine and Microbiology and Immunology and head of the HIV-1 RNA Trafficking Laboratory at the Lady Davis Institute. "When you drive your car to Toronto you're 'trafficking' the items in your trunk. Similarly, what we have shown is that HIV-1 commandeers the host cell's endosomal machinery to traffic its structural proteins and RNA genome. Imagine that it's essentially jumping on board for the ride and directing it to where it needs to go. This trafficking can occur very fast in cells; so this is how these key components of HIV-1 so efficiently get to the plasma membrane, where the virus can begin to assemble.

"The RNA genome is critical, because if it doesn't get trafficked to the right place at the plasma membrane, the virus will not be infectious," he explained.

This discovery is extremely exciting, Dr. Mouland said, because now that researchers understand a little more about how the cell's transport machinery is hijacked by HIV-1, they have hopes that they can now begin to devise strategies to block the process.

Their study was published in May in the Journal of Biological Chemistry. This work is substantiated by a co-submitted manuscript from the group of Édouard Bertrand at the Institut de génétique moléculaire de Montpellier, Centre national de recherche scientifique. The Bertrand group will publish its work in the same journal in June, 2009.


Story Source:

The above story is based on materials provided by McGill University. Note: Materials may be edited for content and length.


Cite This Page:

McGill University. "HIV-1's 'Hijacking Mechanism' Pinpointed." ScienceDaily. ScienceDaily, 15 June 2009. <www.sciencedaily.com/releases/2009/06/090610154501.htm>.
McGill University. (2009, June 15). HIV-1's 'Hijacking Mechanism' Pinpointed. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2009/06/090610154501.htm
McGill University. "HIV-1's 'Hijacking Mechanism' Pinpointed." ScienceDaily. www.sciencedaily.com/releases/2009/06/090610154501.htm (accessed October 1, 2014).

Share This



More Health & Medicine News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pregnancy Spacing Could Have Big Impact On Autism Risks

Pregnancy Spacing Could Have Big Impact On Autism Risks

Newsy (Oct. 1, 2014) — A new study says children born less than one year and more than five years after a sibling can have an increased risk for autism. Video provided by Newsy
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) — A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com
Insertable Cardiac Monitor

Insertable Cardiac Monitor

Ivanhoe (Oct. 1, 2014) — A heart monitor the size of a paperclip that can save your life. The “Reveal Linq” allows a doctor to monitor patients with A-Fib on a continuous basis for up to 3 years! Video provided by Ivanhoe
Powered by NewsLook.com
Attacking Superbugs

Attacking Superbugs

Ivanhoe (Oct. 1, 2014) — Two weapons hospitals can use to attack superbugs. Scientists in Ireland created a new gel resistant to superbugs, and a robot that can disinfect a room in minutes. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins