Featured Research

from universities, journals, and other organizations

World's First 'Self-Watering' Desert Plant: Desert Rhubarb

Date:
July 5, 2009
Source:
University of Haifa
Summary:
Researchers have managed to make out the "self-irrigating" mechanism of the desert rhubarb, which enables it to harvest 16 times the amount of water than otherwise expected for a plant in this region based on the quantities of rain in the desert. This is the first example of a self-irrigating desert plant, the scientists say.

Researchers from the University of Haifa-Oranim have managed to decipher the unique self-watering mechanism of this plant in the Negev desert, which harvests 16 times more water than other plants in the region
Credit: Prof. Gidi Ne'eman, University of Haifa

Researchers from the Department of Science Education-Biology at the University of Haifa-Oranim have managed to make out the "self-irrigating" mechanism of the desert rhubarb, which enables it to harvest 16 times the amount of water than otherwise expected for a plant in this region based on the quantities of rain in the desert. This is the first example of a self-irrigating desert plant, the scientists say.

The desert rhubarb grows in the mountains of Israel's Negev desert, where average precipitation is particularly low (75 mm per year). Unlike most of the other desert plant species, which have small leaves so as to minimize moisture loss, this plant is unique in that its leaves are particularly large; each plant's rosette of one to four leaves reaches a total diameter of up to one meter. Prof. Simcha Lev-Yadun, Prof. Gidi Ne'eman and Prof. Gadi Katzir came across this unique plant growing in the desert while studying the field area with students of the Department of Science Education-Biology of the University of Haifa-Oranim, and noticed that its leaves are unusually large and covered with a waxy cuticle. They observed an exceptionally ridged structure on each leaf, forming a leaf structure that resembles the habitat's mountainous topography.

The scientists explained that these deep and wide depressions in the leaves create a "channeling" mountain-like system by which the rain water is channeled toward the ground surrounding the plant's deep root. Other desert plants simply suffice with the rain water that penetrates the ground in its immediate surroundings.

The findings have shown that the natural selection process has resulted in the evolution of this plant's extremely large leaves, which improved its ability to survive in the arid climate of the desert.

The results of experiments and analysis of the plant's growth - in an area with an average annual rainfall of 75 mm - showed that the desert rhubarb is able to harvest quantities of water that are closer to that of Mediterranean plants, reaching up to 426 mm per year. This is 16 times the amount of water harvested by the small-leafed plants of the Negev desert region. When the research team watered the plant artificially, they observed how the water flows along the course of the leave's depressed veins to the ground surrounding the plant's single root and then penetrates the ground to a depth of 10 cm or more. Under the experimental conditions, water penetrated the ground only as deep as 1 cm.

"We know of no other plant in the deserts of the world that functions in this manner," the researchers concluded.


Story Source:

The above story is based on materials provided by University of Haifa. Note: Materials may be edited for content and length.


Cite This Page:

University of Haifa. "World's First 'Self-Watering' Desert Plant: Desert Rhubarb." ScienceDaily. ScienceDaily, 5 July 2009. <www.sciencedaily.com/releases/2009/07/090701102904.htm>.
University of Haifa. (2009, July 5). World's First 'Self-Watering' Desert Plant: Desert Rhubarb. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2009/07/090701102904.htm
University of Haifa. "World's First 'Self-Watering' Desert Plant: Desert Rhubarb." ScienceDaily. www.sciencedaily.com/releases/2009/07/090701102904.htm (accessed July 28, 2014).

Share This




More Earth & Climate News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins