Featured Research

from universities, journals, and other organizations

Active Genes Discovered In The Developing Mammal Brain

Date:
July 27, 2009
Source:
Penn State
Summary:
New information about the genes involved in a mammal's early brain development, including those that contribute to neurological disorders such as autism and mental retardation, has been discovered. The study is the first to use high-throughput sequencing to uncover active genes in developing brains, and it may be the best evidence yet for the activity in the brain of a large number of genes.

The scientists detected the expression of 1,370 genes in brains on embryonic day 18 (E18), and the expression of 1,373 genes in the brains at post-natal day seven (P7). Among the genes detected on embryonic day 18, the scientists detected the expression of 396 genes that were not detected on post-natal day seven. Among the genes detected on post-natal day seven, the expression of 399 genes was not detect on embryonic day 18. This differential activity suggests that different processes are active in the brain at these two stages of brain development.
Credit: Christina Manbeck, Penn State

A study by scientists at Penn State provides new information about the genes that are involved in a mammal's early brain development, including those that contribute to neurological disorders. The study is the first to use high-throughput sequencing to uncover active genes in developing brains, and it is likely the best evidence thus far for the activity in the brain of such a large number of genes.

The research results one day could lead to the development of drugs or gene therapies that treat neurological disorders such as autism and mental retardation. The research, which was led by Distinguished Professor of Biology Hong Ma and Associate Professor of Biology Gong Chen, will be published online in the Early Edition of the Proceedings of the National Academy of Sciences sometime during the week of 13 July 2009.

In this study, the team used a high-throughput technique to sequence millions of messenger-RNA molecules, which carry genetic information from DNA molecules to protein molecules. The researchers obtained the RNA from the brains of mice, which are an important model system for studying human biology. They found that over 16,000 genes -- more than half of the mouse's entire set of known genes -- are involved in the brain's development and functions. "The brain represents one of the most, if not the most, complex organs in a mammal's body," said Ma. "So we weren't surprised to find that the number of genes that are active in the brain is so high."

The researchers focused on two critical times during the development of a mouse's brain: embryonic day 18 (E18) and post-natal day 7 (P7). "These two time points represent major milestones during brain formation," said Ma. "Brain development in an 18-day-old embryo involves a significant amount of brain cells, or neurons. In contrast, brain development in a seven-day-old infant involves the formation of numerous connections between these neurons. Our goal was to determine which genes are active during these two critical times."

The scientists examined genes that correspond to the RNA molecules from the cortex of a mouse. "The cortex is the surface portion of the large brain that is responsible for most cognitive and sensory abilities," said Ma. The team found that over 3,700 of the 16,000 genes that they had identified have different levels of activity between the E18 and P7 time points. "This differential activity tells us about the differences in the brain at these two stages," said Ma. "For example, the genes that are active at E18, but not at P7, probably are important during E18. We get some support for this notion when we see that certain genes that already are known to be involved in cell division are actively expressed during E18, while other genes that are known to play a role in building the connections between neurons are much more active at P7."

Some of the genes that the researchers found in mice are known to be matched to the human genes that are involved in neurological disorders, such as Alzheimer's disease, autism, and some forms of mental retardation. "Our results can help to pinpoint the specific time during brain development when the genes related to certain diseases are active," said Ma. "This knowledge may help other scientists to develop drugs or gene therapies that can treat the diseases. For example, if a particular gene defect causes poorly constructed connections between certain neurons, a drug might be developed that enhances those connections to compensate for the gene defect."

Ma said his future research plans include looking at some of the genes to see whether they are important for the brain to be formed properly. Chen plans to investigate, specifically, how genes function in development disorders of the brain. This research was supported by Penn State, the National Institutes of Health, and the National Science Foundation.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Active Genes Discovered In The Developing Mammal Brain." ScienceDaily. ScienceDaily, 27 July 2009. <www.sciencedaily.com/releases/2009/07/090713201616.htm>.
Penn State. (2009, July 27). Active Genes Discovered In The Developing Mammal Brain. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2009/07/090713201616.htm
Penn State. "Active Genes Discovered In The Developing Mammal Brain." ScienceDaily. www.sciencedaily.com/releases/2009/07/090713201616.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Liberia Pleads for Help to Fight Ebola

Liberia Pleads for Help to Fight Ebola

AP (Sep. 22, 2014) Liberia's finance minister is urging the international community to quickly follow through on pledges of cash to battle Ebola. Bodies are piling up in the capital Monrovia as the nation awaits more help. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Ebola Doctor Says Border Controls Critical

Ebola Doctor Says Border Controls Critical

AP (Sep. 22, 2014) A Florida doctor who helped fight the expanding Ebola outbreak in West Africa says the disease can be stopped, but only if nations quickly step up their response and make border control a priority. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Global Ebola Aid Increasing But Critics Say It's Late

Global Ebola Aid Increasing But Critics Say It's Late

Newsy (Sep. 21, 2014) More than 100 tons of medical supplies were sent to West Africa on Saturday, but aid workers say the global response is still sluggish. Video provided by Newsy
Powered by NewsLook.com
Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins