Featured Research

from universities, journals, and other organizations

New Blue Light Nanocrystals Could Help Mitigate Global Warming

Date:
July 22, 2009
Source:
DOE/Lawrence Berkeley National Laboratory
Summary:
Researchers have produced nontoxic nanocrystals that efficiently emit blue light and could also play a role in long-term storage of carbon dioxide, a potential means of tempering the effects of global warming.

Molecular Foundry post-doctoral scholar Hoi Ri Moon, staff scientist Jeff Urban and Facility Director Delia Milliron demonstrate magnesium oxide nanocrystals that could be a bright candidate for solid-state lighting.
Credit: Photo by Roy Kaltschmidt, Berkeley Lab Public Affairs

Berkeley Lab researchers have produced non-toxic magnesium oxide nanocrystals that efficiently emit blue light and could also play a role in long-term storage of carbon dioxide, a potential means of tempering the effects of global warming.

In its bulk form, magnesium oxide is a cheap, white mineral used in applications ranging from insulating cables and crucibles to preventing sweaty-palmed rock climbers from losing their grip. Using an organometallic chemical synthesis route, scientists at the Molecular Foundry have created nanocrystals of magnesium oxide whose size can be adjusted within just a few nanometers. And unlike their bulk counterpart, the nanocrystals glow blue when exposed to ultraviolet light.

Current routes for generating these alkaline earth metal oxide nanocrystals require processing at high temperatures, which causes uncontrolled growth or fusing of particles to one another-not a desirable outcome when the properties you seek are size-dependent. On the other hand, vapor phase techniques, which provide size precision, are time and cost intensive, and leave the nanocrystals attached to a substrate.

“We’ve discovered a fundamentally new, unconventional mechanism for nicely controlling the size of these nanocrystals, and realized we had an intriguing and surprising candidate for optical applications,” said Delia Milliron, Facility Director of the Inorganic Nanostructures Facility at Berkeley Lab’s nanoscience research center, the Molecular Foundry. “This efficient, bright blue luminescence could be an inexpensive, attractive alternative in applications such as bio-imaging or solid-state lighting.”

Unlike conventional incandescent or fluorescent bulbs, solid-state lighting makes use of light-emitting semiconductor materials-in general, red, green and blue emitting materials are combined to create white light. However, efficient blue light emitters are difficult to produce, suggesting these magnesium oxide nanocrystals could be a bright candidate for lighting that consumes less energy and has a longer lifespan.

These minute materials do more than glow, however. Along with their promising optical behavior, these magnesium oxide nanocrystals will be a subject of study in an entirely different field of research: Berkeley Labs’ Energy Frontier Research Center (EFRC) for Nanoscale Control of Geologic CO2, designed to “establish the scientific foundations for the geological storage of carbon dioxide.”

Experts say carbon dioxide capture and storage will be vital to achieving significant cuts in greenhouse gas emissions, but the success of this technology hinges on sealing geochemical reservoirs deep below the earth’s surface without allowing gases or fluids to escape. If properly stored, the captured carbon dioxide pumped underground forms carbonate minerals with the surrounding rock by reacting with nanoparticles of magnesium oxide and other mineral oxides.

“These nanocrystals will serve as a test system for modeling the kinetics of dissolution and mineralization in a simulated fluid-rock reservoir, allowing us to probe a key pathway in carbon dioxide sequestration,” said Jeff Urban, a staff scientist in the Inorganic Nanostructures Facility at the Molecular Foundry who is also a member of the EFRC research team. “The geological minerals that fix magnesium into a stable carbonate are compositionally complex, but our nanocrystals will provide a simple model to mimic this intricate process.”

Hoi Ri Moon, a post-doctoral researcher at the Foundry working with Milliron and Urban, noted her team’s direct synthesis method could also be helpful for already-established purposes. “As a user facility that provides support to nanoscience researchers around the world, we would like to pursue studies with other scientists who could use our nanocrystals as ‘feedstock’ for catalysis, another application for which magnesium oxide thin films are commonly used,” said Moon.

“Size-controlled synthesis and optical properties of monodisperse colloidal magnesium oxide nanocrystals,” by Hoi Ri Moon, Jeffrey J. Urban and Delia J. Milliron, appears in Angewandte Chemie International Edition and is available in Angewandte Chemie International Edition online.

Work at the Molecular Foundry was supported by the Office of Basic Energy Sciences within the DOE Office of Science.


Story Source:

The above story is based on materials provided by DOE/Lawrence Berkeley National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

DOE/Lawrence Berkeley National Laboratory. "New Blue Light Nanocrystals Could Help Mitigate Global Warming." ScienceDaily. ScienceDaily, 22 July 2009. <www.sciencedaily.com/releases/2009/07/090721172417.htm>.
DOE/Lawrence Berkeley National Laboratory. (2009, July 22). New Blue Light Nanocrystals Could Help Mitigate Global Warming. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2009/07/090721172417.htm
DOE/Lawrence Berkeley National Laboratory. "New Blue Light Nanocrystals Could Help Mitigate Global Warming." ScienceDaily. www.sciencedaily.com/releases/2009/07/090721172417.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins