Featured Research

from universities, journals, and other organizations

Predator-Prey Interactions Are Key 'Conductors' Of Nature's Synchronicity

Date:
July 23, 2009
Source:
Yale University
Summary:
Predator-prey interactions are the "conductors" of synchronicity in living organisms, according to new research.

Canadian lynx hunting.
Credit: iStockphoto/John Pitcher

Synchronicity in nature is seen in beating hearts, the flashing of fireflies' lights, the ebb and flow of infectious disease—and the simultaneous rise and fall of populations across vast reaches of space. While scientists have identified some factors that account for this melodic phenomenon, they have yet to sort out the relative contribution each plays in this finely tuned orchestra.

Now researchers at Yale University and the University of Calgary report in the July 22 issue of Nature's advanced online publication that predator-prey interactions are the "conductors" of synchronicity in living organisms.

"Change these interactions and you can suffer disastrous consequences to these systems," said David Vasseur, co-author of the paper and assistant professor of ecology and evolutionary biology at Yale.

Vasseur and Jeremy Fox, professor of biological sciences at Calgary, set out to find a way to tease out which factors are most important in creating spatial synchronicity. The close relationship in the rise and fall of populations, for instance, has been well documented in Canadian lynx and snowshoe hare populations. Changes in the abundance of lynx and hare measured at one location are closely mimicked over the entire continent.

Researchers have identified three main causes of synchronicity – the simultaneous rise and fall of populations in different locations. For example, individual snowshoe hares or lynx living in isolated populations can move into other isolated populations. This factor—called dispersal—can link the rise and fall of populations.

The second factor is called the Moran effect, which stipulates that isolated groups of animals experiencing similar environmental fluctuations—such as droughts—will tend to rise and fall in unison.

The third factor is interactions of species—such as the predator-prey relationship.

To test which of these factors is most important, Vasseur and Fox devised a model coupled to a series of experiments that tracked numbers of freshwater microorganisms stored in bottles. They swapped organisms between bottles (dispersal), grew bottles in identical temperatures (the Moran effect), and introduced a predator that eats the microorganism. They tested all combinations of these factors. For instance, they dispersed organisms among bottles with identical temperatures in one treatment and kept organisms in identical temperatures with no dispersal in another. They found a consistent synchronicity in populations in response to temperature change. However, swapping organisms created synchronicity only when predators were present. Without the predators, populations didn't synchronize when individual organisms were exchanged.

"Predators fundamentally change the way that their prey vary through time, creating a cyclic pattern that is quickly synchronized across many locations with only small amounts of dispersal," Vasseur said. "The loss of these cycles, either through species extinctions or global change, may have drastic consequences for the stability of ecosystems and the persistence of species."

The presence of predator creates a cyclic pattern nearly identical to that found in other examples of synchrony in nature. "This synchrony is achieved in the same manner as many other naturally synchronizing phenomena," Fox said. "Cyclic systems, from flashing fireflies to lynx and hares, are like kids bouncing up and down on a trampoline. Adding predators is like making them hold hands, so they all have to bounce together."

Funding for this study was provided by the Natural Sciences and Engineering Research Council of Canada and the Alberta Ingenuity Fund.


Story Source:

The above story is based on materials provided by Yale University. Note: Materials may be edited for content and length.


Cite This Page:

Yale University. "Predator-Prey Interactions Are Key 'Conductors' Of Nature's Synchronicity." ScienceDaily. ScienceDaily, 23 July 2009. <www.sciencedaily.com/releases/2009/07/090722142830.htm>.
Yale University. (2009, July 23). Predator-Prey Interactions Are Key 'Conductors' Of Nature's Synchronicity. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2009/07/090722142830.htm
Yale University. "Predator-Prey Interactions Are Key 'Conductors' Of Nature's Synchronicity." ScienceDaily. www.sciencedaily.com/releases/2009/07/090722142830.htm (accessed September 2, 2014).

Share This




More Plants & Animals News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sharks Off the Menu and on the Tourist Trail in Palau

Sharks Off the Menu and on the Tourist Trail in Palau

AFP (Sep. 2, 2014) Tourists in Palau clamour to dive with sharks thanks to a pioneering conservation initiative -- as the island nation plans to completely ban commercial fishing in its vast ocean territory. 01:15 Video provided by AFP
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Washington Wildlife Center Goes Nuts Over Baby Squirrels

Washington Wildlife Center Goes Nuts Over Baby Squirrels

Reuters - US Online Video (Aug. 30, 2014) An animal rescue in Washington state receives an influx of orphaned squirrels, keeping workers busy as they nurse them back to health. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Newsy (Aug. 29, 2014) In a new study, a promising experimental treatment for Ebola managed to cure a group of infected macaque monkeys. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins