Featured Research

from universities, journals, and other organizations

Synchronized Swimming Of Algae

Date:
July 30, 2009
Source:
University of Cambridge
Summary:
Using high-speed cinematography, scientists have discovered that individual algal cells can regulate the beating of their flagella in and out of synchrony in a manner that controls their swimming trajectories.

Using high-speed cinematography, scientists at Cambridge University have discovered that individual algal cells can regulate the beating of their flagella in and out of synchrony in a manner that controls their swimming trajectories.
Credit: Image courtesy of University of Cambridge

Using high-speed cinematography, scientists at Cambridge University have discovered that individual algal cells can regulate the beating of their flagella in and out of synchrony in a manner that controls their swimming trajectories. Their research was published on the 24th July in the journal Science.

The researchers studied the unicellular organism Chlamydomonas reinhardtii, which has two hair-like appendages known as flagella. The beating of flagella propels Chlamydomonas through the fluid and simultaneously makes it spin about an axis.

The researchers found that cells can beat their flagella in two fundamentally distinct modes: synchronised, with nearly identical frequencies and positions, and unsynchronised, with two rather different frequencies. Using a specialised apparatus to track the swimming trajectories of individual cells, the group showed that the periods of synchrony correspond to nearly straight-line motion, while sharp turns result from the asynchronous beating. Whereas previous studies had suggested that these modes were associated with different subpopulations of cells, the new work shows that the cells actually control the frequencies and thereby switch back and forth between the two modes. In essence, this suggests Chlamydomonas has two 'gears'.

Moreover, the researchers have developed a mathematical analysis that describes the two beating flagella as "coupled oscillators," in a way similar to models of synchronised flashing of fireflies and the "Mexican wave" of people in a stadium. Analyzing terabytes of data on the patterns of synchronisation, they showed that the strength of the coupling was consistent with it arising from the fluid flows set up by the beating flagella. These observations constitute the first direct demonstration that hydrodynamic interactions are responsible for synchronisation, which has long been predicted to lead to such coordination.

Professor Raymond E. Goldstein, the Schlumberger Professor of Complex Physical Systems in the Department of Applied Mathematics and Theoretical Physics (DAMTP) and lead author of the study, said: "These results indicate that flagellar synchronization is a much more complex problem than had been appreciated, and involves a delicate interplay of cellular regulation, hydrodynamics, and biochemical noise."

Funded by the Biotechnology and Biological Sciences Research Council (BBSRC), the work is part of a larger effort to improve our knowledge of evolutionary transitions from single-cell organisms (like Chlamydomonas) to multicellular ones. In addition, the flagella of Chlamydomonas cells are nearly identical to the cilia in the human body. In many of life's processes, from reproduction to respiration, coordinated action of cilia plays a crucial role. For this reason, insight into synchronization and its control may have significant implications for human health and disease.

The group was led by Professor Goldstein and included postdoctoral researchers Dr. Marco Polin and Dr. Idan Tuval, Ph.D. student Knut Drescher, and Professor Jerry P. Gollub, a Leverhulme Visiting Professor at DAMTP from Haverford College.

The article 'Chlamydomonas swims with two `gears' in a eukaryotic version of run-and-tumble locomotion' was published Friday 24th July in the journal Science.


Story Source:

The above story is based on materials provided by University of Cambridge. Note: Materials may be edited for content and length.


Cite This Page:

University of Cambridge. "Synchronized Swimming Of Algae." ScienceDaily. ScienceDaily, 30 July 2009. <www.sciencedaily.com/releases/2009/07/090723142044.htm>.
University of Cambridge. (2009, July 30). Synchronized Swimming Of Algae. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2009/07/090723142044.htm
University of Cambridge. "Synchronized Swimming Of Algae." ScienceDaily. www.sciencedaily.com/releases/2009/07/090723142044.htm (accessed July 24, 2014).

Share This




More Plants & Animals News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Dogs Appear To Become Jealous Of Owners' Attention

Dogs Appear To Become Jealous Of Owners' Attention

Newsy (July 23, 2014) A U.C. San Diego researcher says jealousy isn't just a human trait, and dogs aren't the best at sharing the attention of humans with other dogs. Video provided by Newsy
Powered by NewsLook.com
Professor Creates Site Revealing Where People's Cats Live

Professor Creates Site Revealing Where People's Cats Live

Newsy (July 23, 2014) ​It's called I Know Where Your Cat Lives, and you can keep hitting the "Random Cat" button to find more real cats all over the world. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins