Featured Research

from universities, journals, and other organizations

Protein Folding: Diverse Methods Yield Clues

Date:
August 10, 2009
Source:
Rice University
Summary:
Physicists have written the next chapter in an innovative approach for studying the forces that shape proteins. The new research illustrates the value of studying proteins with a new method that uses the tools of nanotechnology.

Rice University physicists have written the next chapter in an innovative approach for studying the forces that shape proteins -- the biochemical workhorses of all living things.

New research featured on the cover of the August 6 issue of the Journal of Physical Chemistry illustrates the value of studying proteins with a new method that uses the tools of nanotechnology to grab a single molecule and pull it apart. The new method helps scientists measure the forces that hold proteins together. The new study contrasted the findings from Rice's method with a different approach that relies on chemical reactions.

"There is an ongoing discussion among scientists about which of these methods is more relevant," said Ching-Hwa Kiang, assistant professor of physics and astronomy at Rice. "What we've found is that each teaches us something different, but the results from the two are similar enough that we can use them together in the future."

Over the past decades, scientists have discovered that misfolded proteins play an important but mysterious role in diseases like Alzheimer's and Parkinson's. As a result, more laboratories like Kiang's are studying how proteins fold and misfold in the hopes of finding clues that could lead to new treatments.

Kiang's team specializes in studying the forces that hold protein strands together. Her group uses atomic force microscopes (AFM), which operate much like phonograph players. The AFM has a needle that's suspended from one end of a cantilevered arm. The needle bobs up and down on the arm, randomly grabbing and lifting proteins. By measuring exactly how much force it takes to pull the strands apart, Kiang's group can learn important clues about the protein's behavior.

Kiang's work is not the only way to study protein folding. Other groups use chemicals to determine how much energy it takes to unfold proteins, and Kiang's latest paper looks at similarities and differences between the two methods.

"The chemical denaturant method gives very accurate information about the folded and unfolded state of the protein, and our method gives important information about what happens in between," Kiang said.

Proteins are the workhorses of biology. Each protein is a string of amino acids that are attached end to end, like a strand of pearls. The order of the amino acids comes from DNA blueprints, but the order itself doesn't tell scientists what the protein is designed to do. That's because each protein folds in upon itself shortly after its made, much like a strand of pearls curls up as it's dropped into someone's palm.

Unlike the pearls, which might fall this way or that depending upon how they're dropped, proteins fold the same way every time. That's important, because when they misfold, they cannot function properly and in some cases can make people sick.

"This is fundamental research, but it is very important," Kiang said. "We need to answer to these fundamental questions in order to better understand how protein folds correctly, which affects people's health."

The research was sponsored by the National Science Foundation, the National Institutes of Health and the Welch Foundation.


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Cite This Page:

Rice University. "Protein Folding: Diverse Methods Yield Clues." ScienceDaily. ScienceDaily, 10 August 2009. <www.sciencedaily.com/releases/2009/08/090806170719.htm>.
Rice University. (2009, August 10). Protein Folding: Diverse Methods Yield Clues. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2009/08/090806170719.htm
Rice University. "Protein Folding: Diverse Methods Yield Clues." ScienceDaily. www.sciencedaily.com/releases/2009/08/090806170719.htm (accessed April 16, 2014).

Share This



More Matter & Energy News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Google Patents Contact Lens Cameras; Internet Is Wary

Google Patents Contact Lens Cameras; Internet Is Wary

Newsy (Apr. 15, 2014) Google has filed for a patent to develop contact lenses capable of taking photos. The company describes possible benefits to blind people. Video provided by Newsy
Powered by NewsLook.com
The Walking, Talking Oil-Drigging Rig

The Walking, Talking Oil-Drigging Rig

Reuters - Business Video Online (Apr. 15, 2014) Pennsylvania-based Schramm is incorporating modern technology in its next generation oil-drigging rigs, making them smaller, safer and smarter. Ernest Scheyder reports. Video provided by Reuters
Powered by NewsLook.com
Dutch Highway Introduces Glow-In-The-Dark Paint

Dutch Highway Introduces Glow-In-The-Dark Paint

Newsy (Apr. 14, 2014) A Dutch highway has become the first lit by glow-in-the-dark paint — a project aimed at reducing street light use. Video provided by Newsy
Powered by NewsLook.com
Google Buys Drone Maker, Hopes to Connect Rural World

Google Buys Drone Maker, Hopes to Connect Rural World

Newsy (Apr. 14, 2014) Formerly courted by Facebook, Titan Aerospace will become a part of Google's quest to blanket the world in Internet connectivity. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins