Featured Research

from universities, journals, and other organizations

Scrubbing Sulfur: New Process Removes Sulfur Components, Carbon Dioxide From Power Plant Emissions

Date:
August 21, 2009
Source:
DOE/Pacific Northwest National Laboratory
Summary:
Researchers have developed a reusable organic liquid that can pull harmful gases such as carbon dioxide or sulfur dioxide out of industrial emissions from power plants. The process could directly replace current methods and allow power plants to capture double the amount of harmful gases in a way that uses no water, less energy and saves money.

Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull more than just carbon dioxide out of power plant emissions.
Credit: DOE/Pacific Northwest National Laboratory

The Department of Energy's Pacific Northwest National Laboratory has developed a reusable organic liquid that can pull harmful gases such as carbon dioxide or sulfur dioxide out of industrial emissions from power plants. The process could directly replace current methods and allow power plants to capture double the amount of harmful gases in a way that uses no water, less energy and saves money.

"Power plants could easily retrofit to use our process as a direct replacement for existing technology," said David Heldebrant, PNNL's lead research scientist for the project.

Harmful gases such as carbon dioxide or sulfur dioxide are called "acid gases". The new scrubbing process uses acid gas-binding organic liquids that contain no water and appear similar to oily compounds. These liquids capture the acid gases near room temperature. Scientists then heat the liquid to recover and dispose of the acid gases properly.

These recyclable liquids require much less energy to heat but can hold two times more harmful gases by weight than the current leading liquid absorbent used in power plants. It is a combination of water and monoethanolamine, a basic organic molecule that grabs the carbon dioxide.

PNNL's previous work with the all-organic liquids focused on pulling only carbon dioxide out of emissions from power plants. New work will show how the process can be applied to other acid gases such as sulfur dioxide.

"Current methods used to capture and release carbon dioxide emissions from power plants use a lot of energy because they pump and heat an excess of water during the process," said Heldebrant. He notes the monoethanolamine component is too corrosive to be used without the excess water.

In PNNL's process called "Reversible Acid Gas Capture," the molecules that grab onto the acid gases are already in liquid form, and don't contain water. The acid gas-binding organic liquids require less heat than water does to release the captured gases.

Heldebrant and colleagues demonstrated the process in previous work with a carbon dioxide-binding organic liquid, called CO2BOL. In this process, scientists mix the CO2BOL solution into a holding tank with emissions that contain carbon dioxide. The CO2BOL chemically binds with the carbon dioxide to form a liquid salt solution.

In another tank, scientists reheat the salt solution to strip out the carbon dioxide. Non-hazardous gases such as nitrogen would not be captured and are released back into the atmosphere. The toxic compounds are captured separately for storage. At that point, the CO2BOL solution is back in its original state and ready for reuse.

Heldebrant and colleagues have developed organic liquid systems that bind three additional acid gases found in emissions. He will talk about new work with sulfur dioxide, carbonyl sulfide, and carbon disulfide -- all acid gases that are environmentally harmful -- at the American Chemical Society Fall 2009 Meeting and Exposition, Tuesday, August 18, at 4:30 p.m. EDT.

This work is supported by Pacific Northwest National Laboratory's Energy Conversion Initiative, an ongoing research and development effort focused on finding new ways to deliver clean and safe energy.


Story Source:

The above story is based on materials provided by DOE/Pacific Northwest National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

DOE/Pacific Northwest National Laboratory. "Scrubbing Sulfur: New Process Removes Sulfur Components, Carbon Dioxide From Power Plant Emissions." ScienceDaily. ScienceDaily, 21 August 2009. <www.sciencedaily.com/releases/2009/08/090818083226.htm>.
DOE/Pacific Northwest National Laboratory. (2009, August 21). Scrubbing Sulfur: New Process Removes Sulfur Components, Carbon Dioxide From Power Plant Emissions. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2009/08/090818083226.htm
DOE/Pacific Northwest National Laboratory. "Scrubbing Sulfur: New Process Removes Sulfur Components, Carbon Dioxide From Power Plant Emissions." ScienceDaily. www.sciencedaily.com/releases/2009/08/090818083226.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins