Featured Research

from universities, journals, and other organizations

Plants On Steroids: Key Missing Link Discovered Could Improve Understanding of Major Human Diseases

Date:
September 9, 2009
Source:
Carnegie Institution
Summary:
Researchers have discovered a key missing link in the so-called signaling pathway for plant steroid hormones. This discovery marks the first such pathway in plants for which all the steps have been identified. Since this pathway shares many similarities with pathways in humans, the discovery not only could lead to the genetic engineering of improved crops, but also could be a key to understanding major human diseases such as cancer, diabetes and Alzheimer's.

Researchers at the Carnegie Institution's Department of Plant Biology have discovered a key missing link in the so-called signaling pathway for plant steroid hormones (brassinosteroids). Many important signaling pathways are relays of molecules that start at the cell surface and cascade to the nucleus to regulate genes. This discovery marks the first such pathway in plants for which all the steps of the relay have been identified.

Since this pathway shares many similarities with pathways in humans, the discovery not only could lead to the genetic engineering of crops with higher yields, but also could be a key to understanding major human diseases such as cancer, diabetes, and Alzheimer's.

Steroids are important hormones in both animals and plants. Brassinosteroids regulate many aspects of growth and development in plants. Mutants deficient in brassinosteroids are often stunted and infertile. Brassinosteroids are similar in many respects to animal steroids, but appear to function very differently at the cellular level. Animal cells usually respond to steroids using internal receptor molecules within the cell nucleus, whereas in plants the receptors, called receptor-like kinases, are anchored to the outside surface of the cell membranes. For over a decade, scientists have tried to understand how the signal is passed from the cell surface to the nucleus to regulate gene expression. The final gaps were bridged in the study published in the advanced on-line issue of Nature Cell Biology September 6, 2009.

The research team unraveled the pathway in cells of Arabidopsis thaliana, a small flowering plant related to cabbage and mustard often used as a model organism in plant molecular biology.

"This is the first completely connected signaling pathway from a plant receptor-like kinase, which is one of the biggest gene families in plants," says Carnegie's Zhi-Yong Wang, leader of the research team. "The Arabidopsis genome encodes over 400 receptor-like kinases and in rice there are nearly 1,000. We know the functions of about a dozen or so. The completely connected brassinosteroid pathway uses at least six proteins to pass the signal from the receptor all the way to the nuclear genes expressed. This will be a new paradigm for understanding the functional mechanism of other receptor-like kinases."

Understanding the molecular mechanism of brassinosteroid signaling could help researchers develop strategies and molecular tools for genetic engineering of plants with modified sensitivity to hormones, either produced by the plant or sprayed on crops during cultivation, resulting in higher yield or improved traits. "We perhaps could engineer plants with altered sensitivity in different portions of the plant," says Wang. "For example, we could manipulate the signal pathway to increase the biomass accumulation in organs such as fruits that are important as agricultural products, an area highly relevant for food and biofuel production."

Another of the study's findings has potentially far-reaching consequences for human health. The newly identified brassinosteroid signaling pathway component shares evolutionarily conserved domains with the glycogen synthase kinase 3 (GSK3). "GSK3 is found in a wide range of organisms, including mammals," says Wang. "Our study identified a distinct mechanism for regulating GSK3 activity, different from what had been identified in earlier work. GSK3 is known to be critical in the development of health issues such as neural degeneration, cancer, and diabetes, so our finding could open up new avenues for research to understand and treat these diseases."

The research was supported by grants from the National Institutes of Health (R01GM066258), National Science Foundation (0724688), U.S. Department of Energy (DE-FG02-08ER15973), and the Herman Frasch Foundation.


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Cite This Page:

Carnegie Institution. "Plants On Steroids: Key Missing Link Discovered Could Improve Understanding of Major Human Diseases." ScienceDaily. ScienceDaily, 9 September 2009. <www.sciencedaily.com/releases/2009/09/090908151338.htm>.
Carnegie Institution. (2009, September 9). Plants On Steroids: Key Missing Link Discovered Could Improve Understanding of Major Human Diseases. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2009/09/090908151338.htm
Carnegie Institution. "Plants On Steroids: Key Missing Link Discovered Could Improve Understanding of Major Human Diseases." ScienceDaily. www.sciencedaily.com/releases/2009/09/090908151338.htm (accessed August 22, 2014).

Share This




More Plants & Animals News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) — An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) — According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com
Lost Brain Cells To Blame For Sleep Problems Among Seniors

Lost Brain Cells To Blame For Sleep Problems Among Seniors

Newsy (Aug. 21, 2014) — According to a new study, elderly people might have trouble sleeping because of the loss of a certain group of neurons in the brain. Video provided by Newsy
Powered by NewsLook.com
Ramen Health Risks: The Dark Side of the Noodle

Ramen Health Risks: The Dark Side of the Noodle

AP (Aug. 21, 2014) — South Koreans eat more instant ramen noodles per capita than anywhere else in the world. But American researchers say eating too much may increase the risk of diabetes, heart disease and stroke. (Aug. 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins