Featured Research

from universities, journals, and other organizations

MicroRNA Drives Cells' Adaptation To Low-oxygen Living

Date:
October 8, 2009
Source:
Cell Press
Summary:
Researchers have fresh insight into an evolutionarily ancient way that cells cope when oxygen levels decline. In studies of cells taken from the lining of human pulmonary arteries, they show that a microRNA -- a tiny bit of RNA that regulates the activity of particular genes and thus the availability of certain proteins -- allows cells to shift their metabolic gears, in a process known as the Pasteur effect.

Researchers have fresh insight into an evolutionarily ancient way that cells cope when oxygen levels decline, according to a new study in the October 7th issue of Cell Metabolism, a Cell Press publication. In studies of cells taken from the lining of human pulmonary arteries, they show that a microRNA – a tiny bit of RNA that regulates the activity of particular genes and thus the availability of certain proteins – allows cells to shift their metabolic gears, in a process known as the Pasteur effect.

While the discovery is a fundamental one, the researchers say it could point to new ways to tackle diseases, including cancer and cardiovascular disease.

"The Pasteur effect is really best defined as the way by which cells adapt to low oxygen concentrations," said Joseph Loscalzo of Brigham and Women's Hospital and Harvard Medical School. Cells do that by switching from mitochondrial metabolism to glycolysis.

Normally, cells produce high-energy molecules such as ATP through components known as mitochondria, he explained. Loscalzo likens mitochondria to little factories that churn out ATP under normal oxygen conditions. If mitochondria continue to operate when oxygen becomes limited, they do so inefficiently, he said, spewing out toxic derivatives of oxygen (including superoxide and hydrogen peroxide) in the process.

"When cells encounter that situation, they need to direct their energy program from one with mitochondria to one that uses less oxygen," Loscalzo continued. That secondary program, called glycolysis, doesn't produce as much cellular fuel, but it does so without toxic byproducts.

In the new study, the researchers first went in search of microRNA that rise when cells become hypoxic, meaning that they are deprived of sufficient oxygen. That screen done in many types of cells landed them miR-210 as a key player. Using several methods, they were able to predict that miR-210 would influence activity of iron-sulfur cluster assembly proteins (ISCU1/2). Those proteins act as scaffolds that assist in the assembly of iron-sulfur clusters, important ingredients for mitochondria to function.

The team shows that miR-210 does in fact directly target ISCU1/2, which disrupts the integrity of iron-sulfur clusters. As a result, mitochondrial respiration and associated functions get shut down.

The basic findings may have clinical implications, Loscalzo said, noting that scientists have devised increasingly interesting ways to selectively inhibit microRNAs. For instance, cancer cells typically operate under Pasteur effect conditions (a phenomenon known as the Warburg effect.) The ability allows tumors to grow even when they outstrip their blood supplies and prevents the generation of toxic oxygen derivatives within them.

You could imagine that treatments designed to block miR-210 might hobble tumors by manipulating their usual metabolic profile, Loscalzo said. In other settings, you may want to increase miR-210, he added. Such a therapy may have potential in patients with blocked coronary arteries, for instance.

"The transition of heart muscle to miR-210-dependent glycolysis might be enhanced by administering [the miRNA]," he said. By helping that transition along, physicians might be able to help minimize the production of toxic byproducts by mitochondria in their patients, and ultimately preserve more heart tissue, Loscalzo adds.

The researchers include Stephen Y. Chan, Massachusetts General Hospital, Boston, MA, Harvard Medical School, Boston, MA; Ying-Yi Zhang, Brigham and Women's Hospital, Boston, MA, Harvard Medical School, Boston, MA; Craig Hemann, Ohio State University, Columbus, OH; Christopher E. Mahoney, Brigham and Women's Hospital, Boston, MA, Harvard Medical School, Boston, MA; Jay L. Zweier, Ohio State University, Columbus, OH; and Joseph Loscalzo, Brigham and Women's Hospital, Boston, MA, Harvard Medical School, Boston, MA.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "MicroRNA Drives Cells' Adaptation To Low-oxygen Living." ScienceDaily. ScienceDaily, 8 October 2009. <www.sciencedaily.com/releases/2009/10/091006122324.htm>.
Cell Press. (2009, October 8). MicroRNA Drives Cells' Adaptation To Low-oxygen Living. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2009/10/091006122324.htm
Cell Press. "MicroRNA Drives Cells' Adaptation To Low-oxygen Living." ScienceDaily. www.sciencedaily.com/releases/2009/10/091006122324.htm (accessed October 21, 2014).

Share This



More Plants & Animals News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
Goliath Spider Will Give You Nightmares

Goliath Spider Will Give You Nightmares

Buzz60 (Oct. 20, 2014) An entomologist stumbled upon a South American Goliath Birdeater. With a name like that, you know it's a terrifying creepy crawler. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Adorable Video of Baby Rhino and Lamb Friend Playing

Adorable Video of Baby Rhino and Lamb Friend Playing

Buzz60 (Oct. 20, 2014) Gertjie the Rhino and Lammie the Lamb are teaching the world about animal conservation and friendship. TC Newman (@PurpleTCNewman) has the adorable video! Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins