Featured Research

from universities, journals, and other organizations

Seeing Blue: Fish Vision Discovery Makes Waves In Evolutionary Biology

Date:
October 17, 2009
Source:
Emory University
Summary:
Researchers have identified the first fish known to have switched from ultraviolet vision to violet vision, or the ability to see blue light. The discovery is also the first example of an animal deleting a molecule to change its visual spectrum. The findings on scabbardfish link molecular evolution to functional changes and the possible environmental factors driving them.

The scabbardfish (Lepidopus fitchi) is now the only fish known to have switched from ultraviolet to violet vision, or the ability to see blue light.
Credit: Carol Clark, Emory University

Emory University researchers have identified the first fish known to have switched from ultraviolet vision to violet vision, or the ability to see blue light. The discovery is also the first example of an animal deleting a molecule to change its visual spectrum.

Their findings on scabbardfish, linking molecular evolution to functional changes and the possible environmental factors driving them, were published Oct. 13 in the Proceedings of the National Academy of Sciences.

"This multi-dimensional approach strengthens the case for the importance of adaptive evolution," says evolutionary geneticist Shozo Yokoyama, who led the study. "Building on this framework will take studies of natural selection to the next level."

The research team included Takashi Tada, a post-doctoral fellow in biology, and Ahmet Altun, a post-doctoral fellow in biology and computational chemistry.

Vision 'like a painting'

For two decades, Yokoyama has done groundbreaking work on the adaptive evolution of vision in vertebrates. Vision serves as a good study model, since it is the simplest of the sensory systems. For example, only four genes are involved in human vision.

"It's amazing, but you can mix together this small number of genes and detect a whole color spectrum," Yokoyama says. "It's just like a painting."

The common vertebrate ancestor possessed UV vision. However, many species, including humans, have switched from UV to violet vision, or the ability to sense the blue color spectrum.

From the ocean depths

Fish provide clues for how environmental factors can lead to such vision changes, since the available light at various ocean depths is well quantified. All fish previously studied have retained UV vision, but the Emory researchers found that the scabbardfish has not. To tease out the molecular basis for this difference, they used genetic engineering, quantum chemistry and theoretical computation to compare vision proteins and pigments from scabbardfish and another species, lampfish. The results indicated that scabbardfish shifted from UV to violet vision by deleting the molecule at site 86 in the chain of amino acids in the opsin protein.

"Normally, amino acid changes cause small structure changes, but in this case, a critical amino acid was deleted," Yokoyama says.

More examples likely

"The finding implies that we can find more examples of a similar switch to violet vision in different fish lineages," he adds. "Comparing violet and UV pigments in fish living in different habitats will open an unprecedented opportunity to clarify the molecular basis of phenotypic adaptations, along with the genetics of UV and violet vision."

Scabbardfish spend much of their life at depths of 25 to 100 meters, where UV light is less intense than violet light, which could explain why they made the vision shift, Yokoyama theorizes. Lampfish also spend much of their time in deep water. But they may have retained UV vision because they feed near the surface at twilight on tiny, translucent crustaceans that are easier to see in UV light.

A framework for evolutionary biology

Last year, Yokoyama and collaborators completed a comprehensive project to track changes in the dim-light vision protein opsin in nine fish species, chameleons, dolphins and elephants, as the animals spread into new environments and diversified over time. The researchers found that adaptive changes occur by a small number of amino acid substitutions, but most substitutions do not lead to functional changes.

Their results provided a reference framework for further research, and helped bring to light the limitations of studies that rely on statistical analysis of gene sequences alone to identify adaptive mutations in proteins.

"Evolutionary biology is filled with arguments that are misleading, at best," Yokoyama says. "To make a strong case for the mechanisms of natural selection, you have to connect changes in specific molecules with changes in phenotypes, and then you have to connect these changes to the living environment."


Story Source:

The above story is based on materials provided by Emory University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Takashi Tada, Ahmet Altun, and Shozo Yokoyama. Evolutionary replacement of UV vision by violet vision in fish. Proceedings of the National Academy of Sciences, 2009; 106 (41): 17457 DOI: 10.1073/pnas.0903839106

Cite This Page:

Emory University. "Seeing Blue: Fish Vision Discovery Makes Waves In Evolutionary Biology." ScienceDaily. ScienceDaily, 17 October 2009. <www.sciencedaily.com/releases/2009/10/091016121827.htm>.
Emory University. (2009, October 17). Seeing Blue: Fish Vision Discovery Makes Waves In Evolutionary Biology. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2009/10/091016121827.htm
Emory University. "Seeing Blue: Fish Vision Discovery Makes Waves In Evolutionary Biology." ScienceDaily. www.sciencedaily.com/releases/2009/10/091016121827.htm (accessed September 2, 2014).

Share This




More Mind & Brain News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
Coffee Then Napping: The (New) Key To Alertness

Coffee Then Napping: The (New) Key To Alertness

Newsy (Aug. 30, 2014) Researchers say having a cup of coffee then taking a nap is more effective than a nap or coffee alone. Video provided by Newsy
Powered by NewsLook.com
Young Entrepreneurs Get $100,000, If They Quit School

Young Entrepreneurs Get $100,000, If They Quit School

AFP (Aug. 29, 2014) Twenty college-age students are getting 100,000 dollars from a Silicon Valley leader and a chance to live in San Francisco in order to work on the start-up project of their dreams, but they have to quit school first. Duration: 02:20 Video provided by AFP
Powered by NewsLook.com
Baby Babbling Might Lead To Faster Language Development

Baby Babbling Might Lead To Faster Language Development

Newsy (Aug. 29, 2014) A new study suggests babies develop language skills more quickly if their parents imitate the babies' sounds and expressions and talk to them often. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins