Featured Research

from universities, journals, and other organizations

Butterfly proboscis to sip cells

Date:
November 25, 2009
Source:
American Institute of Physics
Summary:
A butterfly's proboscis looks like a straw -- long, slender and used for sipping -- but it works more like a paper towel, according to researchers. They hope to borrow the tricks of this piece of insect anatomy to make small probes that can sample the fluid inside of cells.

A male Common Tiger (Danaus genutia) extended its proboscis for feeding on the nectar. This orange butterfly is commonly seen in urban area. Taken in Bangkok, Thailand.
Credit: iStockphoto

A butterfly's proboscis looks like a straw -- long, slender, and used for sipping -- but it works more like a paper towel, according to Konstantin Kornev of Clemson University. He hopes to borrow the tricks of this piece of insect anatomy to make small probes that can sample the fluid inside of cells.

Kornev will present his work at the 62nd Annual Meeting of the American Physical Society's (APS) Division of Fluid Dynamics will take place from November 22-24 at the Minneapolis Convention Center.

At the scales at which a butterfly or moth lives, liquid is so thick that it is able to form fibers. The insects' liquid food -- drops of water, animal tears, and the juice inside decomposed fruit -- spans nearly three orders of magnitude in viscosity. Pumping liquid through its feeding tube would require an enormous amount of pressure.

"No pump would support that kind of pressure," says Kornev. "The liquid would boil spontaneously."

Instead of pumping, Kornev's findings suggest that butterflies draw liquid upwards using capillary action -- the same force that pulls liquid across a paper towel. The proboscis resembles a rolled-up paper towel, with tiny grooves that pull the liquid upwards along the edges, carrying along the bead of liquid in the middle of the tube. This process is not nearly as affected by viscosity as pumping.

Kornev has been recently awarded an NSF grant to develop artificial probes made of nanofibers that use a similar principal to draw out the viscous liquid inside of cells and examine their contents.

The presentation, "Butterfly proboscis as a biomicrofluidic system" by Konstantin Kornev et al of Clemson University, is on November 22, 2009.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Cite This Page:

American Institute of Physics. "Butterfly proboscis to sip cells." ScienceDaily. ScienceDaily, 25 November 2009. <www.sciencedaily.com/releases/2009/11/091122161748.htm>.
American Institute of Physics. (2009, November 25). Butterfly proboscis to sip cells. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2009/11/091122161748.htm
American Institute of Physics. "Butterfly proboscis to sip cells." ScienceDaily. www.sciencedaily.com/releases/2009/11/091122161748.htm (accessed August 22, 2014).

Share This




More Plants & Animals News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Endangered Red Wolves Face Uncertain Future

Endangered Red Wolves Face Uncertain Future

AP (Aug. 22, 2014) A federal judge temporarily banned coyote hunting to save endangered red wolves, but local hunters say that the wolf preservation program does more harm than good. Meanwhile federal officials are reviewing its wolf program in North Carolina. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Farm Resurgence Grows With Younger Crowd

Farm Resurgence Grows With Younger Crowd

AP (Aug. 22, 2014) New England farms are seeing a surge in younger farm hands as the 'buy local' food movement grows across the country. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins