Featured Research

from universities, journals, and other organizations

New finding in cell migration may be key to preventing clots, cancer spread

Date:
January 15, 2010
Source:
University of Illinois at Chicago
Summary:
Researchers have discovered how cells in the body flatten out as they adhere to internal bodily surfaces, the first step in a wide range of important processes including clot formation, immune defense, wound healing, and the spread of cancer cells.

Researchers at the University of Illinois at Chicago College of Medicine have discovered how cells in the body flatten out as they adhere to internal bodily surfaces, the first step in a wide range of important processes including clot formation, immune defense, wound healing, and the spread of cancer cells.

Their study is published in the January 15 issue of Science.

Xiaoping Du, UIC professor of pharmacology, and his colleagues were trying to better understand how platelets in the blood form clots. Clots that form in blood vessels can lead to heart attack and stroke.

To form clots, platelets flatten out to seal the wound and to bind to each other, a process called "spreading." Spreading is the first step in a number of cell processes, Du says.

In order for cells to move, they must adhere and spread onto the extracellular matrix, a scaffolding of fibers that supports cells. Only then is the cell able to crawl along -- whether it be an immune cell moving toward a wound, or a cancer cell invading neighboring tissue.

Adhesion to the extracellular matrix is mediated by cell receptors called integrins. Du's team "found the mechanism for the transmission of the signal to spread" by the integrins, he said.

The integrin molecule spans the cell membrane, with a portion of the integrin inside the cell and another part outside.

When the outside part of the integrin molecule binds to the matrix, a signal is sent inside the cell via a G protein, a type of protein involved in cell signaling but that was not previously known to interact with integrins.

Du and his colleagues found that the G protein G-alpha-13 binds to the inner side of the integrin molecule when the outside portion binds to the matrix. G-alpha-13 then inhibits a molecule called RhoA, which normally allows the cell to maintain a spherical shape. When RhoA is inhibited by G-alpha-13, the cell is able to flatten out and spread onto the matrix.

Because the factors involved in this first step in spreading are common to virtually all cells, Du believes that the mechanism is likely universal.

"Understanding these fundamental processes has the potential to allow us to develop drugs to treat thrombosis, stroke and heart attack," he said, and may lead to drugs that could stop cancer cells from migrating.

The study was supported by grants from the National Heart Lung and Blood Institute, one of the National Institutes of Health. Haixia Gong, Bo Shen, Panagiotis Flevaris, Christina Chow, Stephen Lam, Tatyana Voyno-Yasenetskaya, and Tohru Kozasa, all of the department of pharmacology in the UIC College of Medicine, contributed to the study.


Story Source:

The above story is based on materials provided by University of Illinois at Chicago. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Chicago. "New finding in cell migration may be key to preventing clots, cancer spread." ScienceDaily. ScienceDaily, 15 January 2010. <www.sciencedaily.com/releases/2010/01/100114143319.htm>.
University of Illinois at Chicago. (2010, January 15). New finding in cell migration may be key to preventing clots, cancer spread. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2010/01/100114143319.htm
University of Illinois at Chicago. "New finding in cell migration may be key to preventing clots, cancer spread." ScienceDaily. www.sciencedaily.com/releases/2010/01/100114143319.htm (accessed April 24, 2014).

Share This



More Health & Medicine News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Pharma Braces for M&A Wave

Big Pharma Braces for M&A Wave

Reuters - Business Video Online (Apr. 22, 2014) Big pharma on the move as Novartis boss, Joe Jimenez, tells Reuters about plans to transform his company via an asset exchange with GSK, and Astra Zeneca shares surge on speculation that Pfizer is looking for a takeover. Joanna Partridge reports. Video provided by Reuters
Powered by NewsLook.com
Study Says Most Crime Not Linked To Mental Illness

Study Says Most Crime Not Linked To Mental Illness

Newsy (Apr. 22, 2014) A new study finds most crimes committed by people with mental illness are not caused by symptoms of their illness or disorder. Video provided by Newsy
Powered by NewsLook.com
Hagel Gets Preview of New High-Tech Projects

Hagel Gets Preview of New High-Tech Projects

AP (Apr. 22, 2014) Defense Secretary Chuck Hagel is given hands-on demonstrations Tuesday of some of the newest research from DARPA _ the military's Defense Advanced Research Projects Agency program. (April 22) Video provided by AP
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins