Featured Research

from universities, journals, and other organizations

Like escape artists, rotifers elude enemies by drying up and -- poof! -- they are gone with the wind

Date:
February 8, 2010
Source:
Cornell University
Summary:
They haven't had sex in some 30 million years, but some very small invertebrates named bdelloid rotifers are still shocking biologists -- they should have gone extinct long ago. Researchers have discovered the secret to their evolutionary longevity: these rotifers are microscopic escape artists. When facing pathogens, they dry up and are promptly gone with the wind.

A spore-bearing fungal parasite emerges from the digested corpse of a bdelloid rotifer. These freshwater invertebrates present an evolutionary puzzle because they have reproduced without sex for millions of years, but have not been driven extinct by relentlessly coevolving parasites. New research by Chris Wilson and Paul Sherman reveals that bdelloids can escape fungal parasites through complete desiccation and dispersal by wind to uninfected habitats. Maintenance of bdelloid asexuality may therefore involve an unending game of "hide-and-seek" in space and time.
Credit: Image courtesy of Kent Loeffler, Kathie T. Hodge and Chris Wilson; copyright Chris Wilson

They haven't had sex in some 30 million years, but some very small invertebrates named bdelloid rotifers are still shocking biologists -- they should have gone extinct long ago. Cornell researchers have discovered the secret to their evolutionary longevity: these rotifers are microscopic escape artists. When facing pathogens, they dry up and are promptly gone with the wind.

Related Articles


"These animals have evolved a way to avoid parasites and pathogens by drying up and blowing away," said Paul Sherman, Cornell professor of neurobiology and behavior, who wrote the paper with lead author Chris Wilson, a Cornell doctoral candidate in Sherman's lab.

After drying up, bdelloids come back to life when re-exposed to fresh water. The Cornell study is featured on the cover of the Jan. 29 issue of Science.

Bdelloid rotifers (pronounced DELL -- oyd ROW-tiff-ers) are tiny, freshwater invertebrates that have long puzzled scientists because, as completely asexual animals, they should have been extinguished by parasites and pathogens long ago in evolutionary time. Instead, the bdelloids have proliferated into more than 450 species. Asexual animals like rotifers reproduce by cloning and this makes for a fixed gene pool.

Many scientists believe that the function of sex itself is to shuffle genes around. They theorize that the fresh genetic combinations that which sex provides allow sexual animals to fend off relentlessly evolving parasites and pathogens.

The discovery that bdelloids can desiccate and wisp away with the wind helps resolve the mystery of their ancient asexuality and success.

"It also helps answer one of the deepest puzzles in evolutionary biology -- why sex is nearly ubiquitous," said Wilson.

To study the bdelloids' adaptations, Wilson infected populations of rotifers with deadly fungi and found that they all died within a few weeks.

He then tried drying out other infected populations for varying lengths of time before rehydrating them. He found that the fungi were far more sensitive to dehydration than the rotifers. The longer the infected populations remained dried out, the more successful they were at completely ridding themselves of fungi and eluding death.

In a second wave of experiments, Wilson placed dried, fungus-infected rotifers in a wind chamber. The scientists observed that the rotifers were able to disperse without the fungi and establish parasite-free populations. After just seven days of blowing around, there were as many fungus-free rotifer populations as there were after three weeks of dehydration without wind. So, by drying and drifting passively on the wind -- sometimes for hundreds of miles -- bdelloids can continually establish new, uninfected populations.

"These animals are essentially playing an evolutionary game of hide and seek," said Sherman. "They can drift on the wind to colonize parasite-free habitat patches where they reproduce rapidly and depart again before their enemies catch up. This effectively enables them to evade biotic enemies without sex, using mechanisms that no other known animals can duplicate."

The study was supported by Sigma Xi, the U.S. Department of Agriculture, Cornell and Cornell's Stephen H. Weiss Presidential Fellowship Fund.


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Cite This Page:

Cornell University. "Like escape artists, rotifers elude enemies by drying up and -- poof! -- they are gone with the wind." ScienceDaily. ScienceDaily, 8 February 2010. <www.sciencedaily.com/releases/2010/01/100128142130.htm>.
Cornell University. (2010, February 8). Like escape artists, rotifers elude enemies by drying up and -- poof! -- they are gone with the wind. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2010/01/100128142130.htm
Cornell University. "Like escape artists, rotifers elude enemies by drying up and -- poof! -- they are gone with the wind." ScienceDaily. www.sciencedaily.com/releases/2010/01/100128142130.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
New Dinosaur Species Found in Museum Collection

New Dinosaur Species Found in Museum Collection

Reuters - Innovations Video Online (Nov. 27, 2014) A British palaeontologist has discovered a new species of dinosaur while studying fossils in a Canadian museum. Pentaceratops aquilonius was related to Triceratops and lived at the end of the Cretaceous Period, around 75 million years ago. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Tryptophan Isn't Making You Sleepy On Thanksgiving

Tryptophan Isn't Making You Sleepy On Thanksgiving

Newsy (Nov. 27, 2014) Tryptophan, a chemical found naturally in turkey meat, gets blamed for sleepiness after Thanksgiving meals. But science points to other culprits. Video provided by Newsy
Powered by NewsLook.com
Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins