Featured Research

from universities, journals, and other organizations

Tumor suppressor p53 prevents cancer progression in cells with missegregated chromosomes

Date:
February 2, 2010
Source:
Rockefeller University Press
Summary:
Cells missegregate a chromosome approximately once every hundred divisions. But don't be too alarmed: new research shows that the tumor suppressor p53 limits the growth of cells with incorrect numbers of chromosomes and prevents their progression toward cancer.

Thompson and Compton introduced a single fluorescent mark into the genome of a diploid cell line, induced missegregation, and identified the cells that incorrectly carried two or zero marks (green) on their DNA (blue). These cells arrested due to increased levels of the tumor suppressor p53 (purple) and its transcriptional target, the cyclin-dependent kinase inhibitor p21 (red).
Credit: Thompson, S.L., and D.A. Compton. 2010. J. Cell Biol. doi:10.1083/jcb. 200905057.

Cells missegregate a chromosome approximately once every hundred divisions. But don't be too alarmed: new research in the Journal of Cell Biology shows that the tumor suppressor p53 limits the growth of cells with incorrect numbers of chromosomes and prevents their progression toward cancer. The study appears online February 1.

Related Articles


Tumor cells tend to missegregate chromosomes at a particularly high frequency (a condition known as chromosomal instability, or CIN), which is probably why they are often aneuploid (i.e., they carry an abnormal number of chromosomes). In 2008, Sarah Thompson and Duane Compton, from Dartmouth Medical School, revealed that most CIN in tumor cells was caused by incorrect attachments between mitotic spindle microtubules and kinetochores, and that inducing misattachments in normal cells was sufficient to generate high rates of chromosome missegregation. There was a small but significant wrinkle to this story, however: normal, diploid cells stopped proliferating as soon as they gained or lost a chromosome, so they never converted into a cancer-like aneuploid cell line.

To investigate why normal cells stop proliferating when they missegregate their DNA, Thompson and Compton engineered a human cell line to carry a unique fluorescent mark on one of its chromosomes. This allowed them to identify and follow by live microscopy the cells that missegregated a chromosome.

The researchers induced missegregation and then looked for cells that had gained or lost a fluorescent mark within their genome. These cells failed to proliferate, and showed elevated levels of p53 and one of its transcriptional targets, the cell cycle inhibitor p21. Cells lacking p53 became aneuploid after induced missegregation, indicating that the p53 pathway normally serves to limit the propagation of cells with odd numbers of chromosomes.

How is p53 activated by chromosome missegregation? Thompson and Compton think that a change in chromosome number leads to an imbalance in gene expression, resulting in a stress response and cell cycle arrest that is vital to avoid cancer. "By combining loss of p53 with increased missegregation rates, we can convert a diploid cell into something …. that looks like a tumor cell," says Compton. Furthermore, these aneuploid cells develop an inherent genomic instability reminiscent of genuine cancer cells, perhaps because imbalanced gene expression also causes disruptions to mitosis.

A recent study demonstrated that chromosome missegregation initiates tumorigenesis by causing cells to lose tumor suppressors like p53. "It's like a self-fulfilling prophecy," argues Compton. "If you missegregate a chromosome encoding p53, you make the cells deficient in p53, so they're able to propagate and missegregate more chromosomes."

There are circumstances in which nontumor cells tolerate aneuploidy just fine, but, in most cases, healthy cells keep a tight check on chromosome number. "I think it affects a lot of different pathways," says Compton. "The next question to ask is which pathways are sensitive to aneuploidy, and how do tumor cells overcome those problems?"

Reference: Thompson, S.L., and D.A. Compton. 2010. J. Cell Biol. doi:10.1083/jcb. 200905057.


Story Source:

The above story is based on materials provided by Rockefeller University Press. Note: Materials may be edited for content and length.


Cite This Page:

Rockefeller University Press. "Tumor suppressor p53 prevents cancer progression in cells with missegregated chromosomes." ScienceDaily. ScienceDaily, 2 February 2010. <www.sciencedaily.com/releases/2010/02/100201091624.htm>.
Rockefeller University Press. (2010, February 2). Tumor suppressor p53 prevents cancer progression in cells with missegregated chromosomes. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2010/02/100201091624.htm
Rockefeller University Press. "Tumor suppressor p53 prevents cancer progression in cells with missegregated chromosomes." ScienceDaily. www.sciencedaily.com/releases/2010/02/100201091624.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins