Featured Research

from universities, journals, and other organizations

Defective signaling pathway sheds light on cystic fibrosis

Date:
February 15, 2010
Source:
University of California - San Diego
Summary:
In a study that could lead to new therapeutic targets for patients with the cystic fibrosis, scientists have identified a defective signaling pathway that contributes to disease severity.

In a study that could lead to new therapeutic targets for patients with the cystic fibrosis, a research team from the University of California, San Diego School of Medicine has identified a defective signaling pathway that contributes to disease severity. In the study, published in the journal Nature Medicine, the researchers report that defective signaling for a protein called the peroxisome proliferator-activated receptor-γ (PPAR-γ) accounts for a portion of disease symptoms in cystic fibrosis, and that correction of the defective pathway reduces symptoms of the disease in mice.

Related Articles


In the paper published in the February 14 edition of the journal, lead investigator Gregory Harmon, MD, study supervisor Christopher Glass, MD, PhD, professor of cellular and molecular medicine, and colleagues show that both mice and cells from patients with cystic fibrosis have a defect in signaling for PPAR-γ, as a result of reduced levels of prostaglandins that activate the receptor.

Cystic fibrosis is the most common, potentially lethal genetic disease among whites, occurring in one in 3,000 births. The disease is a multisystem condition that leads to progressive lung failure, pancreatic failure and gastrointestinal obstruction, or blockage.

"Cystic fibrosis results from a genetic mutation in a channel, or membrane pore, that facilitates the transport of chloride and bicarbonate electrolytes from inside the cell to the spaces outside the cell," said Harmon. "Loss of the cystic fibrosis pore channel results in inflammation and mucus accumulation. It also results in dehydration of the cell surfaces that make up the lining spaces inside the lungs and other affected organs, such as the intestinal tract."

Exactly how the process occurs has been a matter of intense scientific scrutiny; yet despite numerous therapeutic advances, individuals with the disease continue to endure a shortened lifespan. "Someone born in the 1990s with cystic fibrosis is expected to live to an age of around 40," Harmon added.

Working with isolated cells from mice and human cell lines from patients with the disease, Harmon identified that multiple genes affected by PPAR-γ were reduced in cystic fibrosis. When the researchers treated mice with cystic fibrosis with the drug rosiglitazone, a thiazolidinedione drug that binds and activates PPAR-γ, gene expression was largely normalized and survival improved. The drugs also corrected part of the inflammatory process in the tissue. Deleting the PPAR-γ protein in the intestine of mice worsened the disease, leading to mucus accumulation in the intestine. Additionally, the researchers found that activating PPAR-γ could increase bicarbonate production in the intestinal tissue by increasing the activity of bicarbonate-producing enzymes called carbonic anhydrases.

"For the first time, we are able to use a drug that activates bicarbonate transport without affecting chloride transport, and see improvement in the disease," Harmon said. The results provide support for the hypothesis of experts in the field such as UCSD's Paul Quinton, PhD, who has written that increasing bicarbonate in cystic fibrosis tissues could be a relevant target for future therapies.

"The finding of the reduced PPAR-γ activating prostaglandin in cystic fibrosis is exciting since it could serve as a marker to identify which patients might benefit from treatment with PPAR-&gamm activating drugs," said Glass.

Additional contributors include Darren S. Dumlao and Edward A. Dennis of the Department of Chemistry and Biochemistry and Department of Pharmacology; Damian T. Ng, Department of Cellular and Molecular Medicine; and Kim E. Barrett and Hui Dong, Department of Medicine; all at the University of California, San Diego.

These studies were supported by grants from the National Institutes of Health and a Fellowship to Faculty Transition Award from the Foundation for Digestive Health and Nutrition to Harmon.


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Diego. "Defective signaling pathway sheds light on cystic fibrosis." ScienceDaily. ScienceDaily, 15 February 2010. <www.sciencedaily.com/releases/2010/02/100214143133.htm>.
University of California - San Diego. (2010, February 15). Defective signaling pathway sheds light on cystic fibrosis. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2010/02/100214143133.htm
University of California - San Diego. "Defective signaling pathway sheds light on cystic fibrosis." ScienceDaily. www.sciencedaily.com/releases/2010/02/100214143133.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Americans Drink More in the Winter

Americans Drink More in the Winter

Buzz60 (Dec. 22, 2014) The BACtrack breathalyzer app analyzed Americans' blood alcohol content and found out a whole lot of interesting things about their drinking habits. Mara Montalbano (@maramontalbano) has more. Video provided by Buzz60
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins