Featured Research

from universities, journals, and other organizations

Mystery of symmetry in vertebrates revealed

Date:
March 11, 2010
Source:
CNRS
Summary:
Some of our organs, such as the liver and the heart, are lateralized. As our bodies develop they mostly display bilateral symmetry across the vertebral column. A new molecular pathway, which plays a role in this symmetry in vertebrates, has recently been discovered.

Some of our organs, such as the liver and the heart, are lateralised. As our bodies develop they mostly display bilateral symmetry across the vertebral column. A new molecular pathway, which plays a role in this symmetry in vertebrates, has recently been discovered by a Franco-American team led by Olivier Pourquiι at the Stowers Institute for Medical research, who moved a short while ago to the Institute of Genetics and Molecular and Cellular Biology (CNRS / Inserm / University of Strasbourg).

This work was published February 18, in Nature.

Vertebral symmetry appears early in the course of embryonic development, at the time when somites are formed. Somites are cubic shaped structures from which the vertebrae and the muscles, in particular, are derived. Under the influence of an internal clock, pairs of somites develop, in a periodic manner, starting from the internal cellular layers of the embryo. Retinoic acid, a derivative of vitamin A, appears to play a significant role in controlling the symmetry of the somites. Moreover, it is known that semitogenesis becomes desynchronised in mice which are deficient in retinoic acid.

In a study performed on mouse embryos, the researchers investigated the Rere protein, also known as atrophin 2. They showed that this molecule participates in the activation of the signalling pathway for retinoic acid by forming a complex with two other proteins, Nr2f2 and p300, and a retinoic acid receptor. Mice mutated for the Rere gene show the same retarded somite formation as mice which are deficient in retinoic acid.

Their work also showed that the proteins, Nr2f2 and Rere, control the asymmetry of the signalling pathway for retinoic acid. This asymmetry is required to correct interference with the signals which determine the lateralisation of organs. Hence, this study improves our understanding of how the general symmetry of the body can be reconciled with the lateralisation of some organs.

In man, the anomalies in symmetric development of the somites could be responsible for vertebral symmetry disorders such as scoliosis. A defect in the regulation of functions performed by RERE or Nr2f2 on the retinoic acid signalling pathway may be implicated in the occurrence of these frequent, and sometimes acute, diseases.


Story Source:

The above story is based on materials provided by CNRS. Note: Materials may be edited for content and length.


Journal Reference:

  1. Gonηalo C. Vilhais-Neto et al. Rere controls retinoic acid signalling and somite bilateral symmetry. Nature, February 2010

Cite This Page:

CNRS. "Mystery of symmetry in vertebrates revealed." ScienceDaily. ScienceDaily, 11 March 2010. <www.sciencedaily.com/releases/2010/02/100226204549.htm>.
CNRS. (2010, March 11). Mystery of symmetry in vertebrates revealed. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2010/02/100226204549.htm
CNRS. "Mystery of symmetry in vertebrates revealed." ScienceDaily. www.sciencedaily.com/releases/2010/02/100226204549.htm (accessed April 17, 2014).

Share This



More Plants & Animals News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Change of Diet Helps Crocodile Business

Change of Diet Helps Crocodile Business

Reuters - Business Video Online (Apr. 16, 2014) — Crocodile farming has been a challenge in Zimbabwe in recent years do the economic collapse and the financial crisis. But as Ciara Sutton reports one of Europe's biggest suppliers of skins to the luxury market has come up with an unusual survival strategy - vegetarian food. Video provided by Reuters
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) — A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Thousands Of Vials Of SARS Virus Go Missing

Thousands Of Vials Of SARS Virus Go Missing

Newsy (Apr. 16, 2014) — A research institute in Paris somehow misplaced more than 2,000 vials of the deadly SARS virus. Video provided by Newsy
Powered by NewsLook.com
Raw: Three Rare White Tiger Cubs Debut at Zoo

Raw: Three Rare White Tiger Cubs Debut at Zoo

AP (Apr. 16, 2014) — The Buenos Aires Zoo debuted a trio of rare white Bengal tiger cubs on Wednesday. (April 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins