Featured Research

from universities, journals, and other organizations

Mercurial tuna: Study explores sources of mercury to ocean fish

Date:
March 4, 2010
Source:
University of Michigan
Summary:
With concern over mercury contamination of tuna on the rise and growing information about the health effects of eating contaminated fish, scientists would like to know exactly where the pollutant is coming from and how it's getting into open-ocean fish species.

With concern over mercury contamination of tuna on the rise and growing information about the health effects of eating contaminated fish, scientists would like to know exactly where the pollutant is coming from and how it's getting into open-ocean fish species.

A new study published in the journal Environmental Science & Technology uses chemical signatures of nitrogen, carbon and mercury to get at the question. The work also paves the way to new means of tracking sources of mercury poisoning in people.

The study, by researchers at the University of Michigan, Harvard School of Public Health, the Louisiana Universities Marine Consortium and the National Institute of Nutrition and Seafood Research in Norway, appears in the journal's March 1, 2010 issue.

Mercury is a naturally occurring element, but some 2,000 tons of it enter the global environment each year from human-generated sources such as coal-burning power plants, incinerators and chlorine-producing plants. Deposited onto land or into water, mercury is picked up by microorganisms, which convert some of it to methylmercury, a highly toxic form that builds up in fish and the animals -- and people -- that eat them.

The primary way people in the United States are exposed to methylmercury is by eating fish and shellfish. Health effects include damage to the central nervous system, heart and immune system, and the developing brains of young and unborn children are especially vulnerable.

In the current study, the researchers wanted to know if tuna and other open-ocean fish pick up methylmercury by eating contaminated fish that live closer to shore or by some other means. They studied 11 species of fish, including red snapper, speckled trout, Spanish mackerel and two species of tuna. Seven of the species studied live in the shallow, coastal waters of the Gulf of Mexico; the two tuna species live far out in the ocean and are highly migratory; the remaining two species spend parts of their lives in both habitats.

It's no mystery how the coastal fish acquire methylmercury, said Joel Blum, who is the John D. MacArthur Professor of Geological Sciences at U-M. "We know that there's a lot of mercury pollution in the coastal zone. A large amount of mercury comes down the Mississippi River, and there's also air pollution and deposition of mercury from the highly industrialized coastal Gulf region." In this environment, methylation occurs in the low-oxygen conditions of the lower water column and sediments, and the methylmercury wends its way up the food web, becoming more concentrated at each step along the way.

"It's much less clear how methylmercury gets into open-ocean fish species, some of which don't come anywhere close to shore but can still have very high levels," said the study's lead author, David Senn, formerly of the Harvard School of Public Health, and now a senior researcher at the Swiss Federal Institute of Aquatic Science and Technology. Scientists have proposed three possibilities.

One is that open-ocean fish visit coastal areas to feed, picking up methylmercury from the coastal food web. Another possibility is that small organisms that acquire methylmercury in coastal regions are washed out to sea, where they enter the open-ocean food web. In the third scenario, mercury is directly deposited into the open ocean, where it undergoes methylation.

By looking at three chemical signatures in the fish -- nitrogen isotopes, carbon isotopes and mercury isotopes -- Senn, Blum and colleagues learned that coastal fish and open-ocean fish are feeding from two separate food webs.

"That rules out the first explanation, that these tuna were getting their methylmercury by feeding off coastal fish," Senn said.

"We think it's unlikely that the mercury is being methylated in coastal sediments and then washed out to the open ocean, so the most likely alternative is that there is deposition and methylation of mercury in the open ocean," Blum said. The finding runs counter to the long-held view that the open ocean is too oxygen-rich to support methylation, but it is consistent with recent studies suggesting more methylation may be occurring in that environment than was previously thought.

"It turns out there are probably low-oxygen microenvironments on tiny particles of organic matter, where methylation may be able to occur," Blum said.

One of the biggest differences the researchers found between coastal and open-ocean fish was in their mercury "fingerprint." The fingerprint is the result of a natural phenomenon called isotopic fractionation, in which different isotopes of mercury react to form new compounds at slightly different rates. In one type of isotopic fractionation, mass-dependent fractionation (MDF), the differing rates depend on the masses of the isotopes. In mass-independent fractionation (MIF), the behavior of the isotopes depends not on their absolute masses but on whether their masses are odd or even.

The researchers found that open-ocean fish have a much stronger MIF fingerprint than do coastal fish, a discovery that opens the door to new ways of analyzing human exposure to mercury.

"We can do an isotopic analysis of the mercury in your hair, and by looking at this mass-independent signal, tell you how much of the mercury is coming from inorganic sources, such as exposure to mercury gas or amalgams in your dental fillings, versus how much is coming from the fish that you eat," Blum said. "We think this could become a widespread technique for identifying sources of mercury contamination."

Senn and Blum's coauthors are Edward Chesney of the Louisiana Universities Marine Consortium; Michael Bank and James Shine of Harvard School of Public Health; and Amund Maage of Norway's National Institute of Nutrition and Seafood Research.

The research was funded by a National Oceanic and Atmospheric Administration grant to Harvard School of Public Health and by the University of Michigan.


Story Source:

The above story is based on materials provided by University of Michigan. Note: Materials may be edited for content and length.


Journal Reference:

  1. David B. Senn, Edward J. Chesney, Joel D. Blum, Michael S. Bank, Amund Maage and James P. Shine. Stable Isotope (N, C, Hg) Study of Methylmercury Sources and Trophic Transfer in the Northern Gulf of Mexico. Environmental Science & Technology, 2010; 44 (5): 1630 DOI: 10.1021/es902361j

Cite This Page:

University of Michigan. "Mercurial tuna: Study explores sources of mercury to ocean fish." ScienceDaily. ScienceDaily, 4 March 2010. <www.sciencedaily.com/releases/2010/03/100302111918.htm>.
University of Michigan. (2010, March 4). Mercurial tuna: Study explores sources of mercury to ocean fish. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2010/03/100302111918.htm
University of Michigan. "Mercurial tuna: Study explores sources of mercury to ocean fish." ScienceDaily. www.sciencedaily.com/releases/2010/03/100302111918.htm (accessed September 2, 2014).

Share This




More Plants & Animals News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Washington Wildlife Center Goes Nuts Over Baby Squirrels

Washington Wildlife Center Goes Nuts Over Baby Squirrels

Reuters - US Online Video (Aug. 30, 2014) An animal rescue in Washington state receives an influx of orphaned squirrels, keeping workers busy as they nurse them back to health. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Newsy (Aug. 29, 2014) In a new study, a promising experimental treatment for Ebola managed to cure a group of infected macaque monkeys. Video provided by Newsy
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins