Featured Research

from universities, journals, and other organizations

Rewiring of gene regulation across 300 million years of evolution

Date:
April 12, 2010
Source:
European Molecular Biology Laboratory
Summary:
Researchers have discovered a remarkable amount of plasticity in how transcription factors, the proteins that bind to DNA to control the activation of genes, maintain their function over large evolutionary distances.

Researchers from Cambridge, Glasgow and Greece have discovered a remarkable amount of plasticity in how transcription factors, the proteins that bind to DNA to control the activation of genes, maintain their function over large evolutionary distances.

Related Articles


The text books tell us that transcription factors recognise the genes that they regulate by binding to short, sequence-specific lengths of DNA upstream or downstream of their target genes. It was widely assumed that, like the sequences of the genes themselves, these transcription factor binding sites would be highly conserved throughout evolution. However, this turns out not to be the case in mammals.

Reporting in the journal Science, the authors traced the evolution of gene regulation by comparing the binding of evolutionarily conserved transcription factors in the genomes of five vertebrate species -- human, dog, mouse, short-tailed opossum and chicken -- spanning 300 million years.

In all tested species, the transcription factors CEBPA and HNF4A are master regulators of liver-specific genes. By mapping the binding of CEBPA and HNF4A in the genomes of each species and comparing those maps, they found that in most cases neither the site nor the sequence of the transcription factor binding sites is conserved, yet despite this, these transcription factors still manage to regulate the largely conserved gene expression and function of liver tissue.

Paul Flicek, leader of the Vertebrate Genomics Team at EMBL-EBI, an outstation of the European Molecular Biology Laboratory, and coauthor on the paper said "The evolutionary changes in transcription factor binding in the five species have left clues that we can use to explain how function is preserved but not necessarily sequence. What we have learnt is that although the transcription factors regulate similar target genes in all five species, the binding events underpinning this regulation have not been conserved as the species diverged."

"By studying changes in transcription factor binding, we can understand the evolution of gene regulation," said Duncan Odom from Cancer Research UK Cambridge Research Institute and coauthor on the paper. He continued: "Differences in gene regulation are central to explaining differences between species, and gene misregulation is a key causative factor in diseases like cancer."

The results reveal that sequence conservation is not the whole story when it comes to maintaining tissue-specific gene regulation.


Story Source:

The above story is based on materials provided by European Molecular Biology Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. Schmidt, M. D. Wilson, B. Ballester, P. C. Schwalie, G. D. Brown, A. Marshall, C. Kutter, S. Watt, C. P. Martinez-Jimenez, S. Mackay, I. Talianidis, P. Flicek, D. T. Odom. Five-Vertebrate ChIP-seq Reveals the Evolutionary Dynamics of Transcription Factor Binding. Science, 2010; DOI: 10.1126/science.1186176

Cite This Page:

European Molecular Biology Laboratory. "Rewiring of gene regulation across 300 million years of evolution." ScienceDaily. ScienceDaily, 12 April 2010. <www.sciencedaily.com/releases/2010/04/100409093211.htm>.
European Molecular Biology Laboratory. (2010, April 12). Rewiring of gene regulation across 300 million years of evolution. ScienceDaily. Retrieved November 22, 2014 from www.sciencedaily.com/releases/2010/04/100409093211.htm
European Molecular Biology Laboratory. "Rewiring of gene regulation across 300 million years of evolution." ScienceDaily. www.sciencedaily.com/releases/2010/04/100409093211.htm (accessed November 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, November 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Baby Okapi Born at Houston Zoo

Raw: Baby Okapi Born at Houston Zoo

AP (Nov. 20, 2014) The Houston Zoo released video of a male baby okapi. Okapis, also known as the "forest giraffe", are native to the Democratic Republic of the Congo in Central Africa. Video is mute from source. (Nov. 20) Video provided by AP
Powered by NewsLook.com
Your Complicated Job Might Keep Your Brain Young

Your Complicated Job Might Keep Your Brain Young

Newsy (Nov. 20, 2014) Researchers at the University of Edinburgh found the more complex your job is, the sharper your cognitive skills will likely be as you age. Video provided by Newsy
Powered by NewsLook.com
Mysterious Glow Worms Found in the Amazon

Mysterious Glow Worms Found in the Amazon

Buzz60 (Nov. 20, 2014) Wildlife photographer Jeff Cremer teamed up with entomologist Aaron Pomerantz and others to investigate a predatory glow worm found in the Amazon. Patrick Jones (@Patrick_E_Jones) explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins