Featured Research

from universities, journals, and other organizations

Kissing cousins: Genes critical to moths’ complicated sexual communication and their evolution uncovered

Date:
April 12, 2010
Source:
North Carolina State University
Summary:
Researchers have figured out the complicated mechanism behind sexual communication in moths, and have learned something about evolutionary processes at the same time.

To look at the tobacco budworm moth and its close cousin, you wouldn't be able to tell the fuzzy-looking, fingertip-size moths apart. But put males of each species as far as six car-lengths away from females, and even in the darkness of midnight they easily find their way to mates from their own species while ignoring females from the other species. Today, the genes that keep the species sexually isolated are no longer a mystery, thanks to research from North Carolina State University and the University of Utah.

NC State entomologist Dr. Fred Gould says the study, published in the online edition of the Proceedings of the National Academy of Sciences, gives scientists a better understanding of how moths descended from a common ancestor and evolved distinctly different ways of communicating with mates.

Biologists have long been fascinated by the intricate way moths communicate through airborne chemicals known as sex pheromones. There are more than 100,000 species of moths, with each relying on its own unique pheromone blend, different in terms of the chemicals that make it up and the ratio of those chemicals. Females produce these precisely blended perfumes, and only males of their species respond to that sexual cue. Until now, scientists had a long list of potential genes and cellular molecules that could be responsible for each male finding only females of its own species.

In the PNAS paper, Gould and his collaborators explain how, through breeding, they moved a number of hypothesized sexual communication genes from Heliothis virescens, the budworm, into Heliothis subflexa, its close relative. They found that when they moved one specific small set of odorant receptor genes, the hybrid males understood and responded to the female budworm's pheromones in the same way that true male budworms respond.

The scientists cross-bred the related moths in their Raleigh laboratory and studied the moths' behavior in Utah wind tunnels, watching to see which pheromone blends attracted and repelled which offspring.

Then they inserted tiny electrodes into cells of the moths' antennae and measured how neurons in the antennae responded to the pheromones of the two species. They found that in each male the antennae neurons' response was largely controlled by which of the species' receptor genes it had inherited.

"In the end, the finding that big changes in the moths' responses to pheromones are controlled by such a small genetic change is a first step toward understanding how the thousands of moth species evolved," Gould says.

The puzzle, or evolutionary paradox, has been that within each moth species "natural selection constantly acts against any female that makes a novel pheromone blend that isn't recognized by males of its species," Gould says. "And males that have a mutated receptor gene that recognizes an as-yet-unevolved pheromone will have a hard time finding a mate."

This has led some to assume that a new moth species could evolve only if genetic changes occurred in the male and female at the same instant in evolutionary time -- which is highly unlikely.

"In the narrow sense, the research is about the evolution of sexual communication and speciation," Gould says. "But in a broader sense, it is about the evolution of what are sometimes called characteristics with irreducible complexity. Irreducible complexity is the idea that some traits are so complicated that there's no way for them to have evolved by natural selection.

"Moths seem to possess an irreducibly complex mating system," he says, "but perhaps the puzzle of how this system evolved has simply been difficult to solve."

Gould and his colleagues hope that, armed with a new understanding of the male sexual communication genes plus knowledge of the female genes from previous studies, they may now be in a position to recreate the evolutionary events involved in moth speciation. That would finally solve the puzzle.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Cite This Page:

North Carolina State University. "Kissing cousins: Genes critical to moths’ complicated sexual communication and their evolution uncovered." ScienceDaily. ScienceDaily, 12 April 2010. <www.sciencedaily.com/releases/2010/04/100412162114.htm>.
North Carolina State University. (2010, April 12). Kissing cousins: Genes critical to moths’ complicated sexual communication and their evolution uncovered. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2010/04/100412162114.htm
North Carolina State University. "Kissing cousins: Genes critical to moths’ complicated sexual communication and their evolution uncovered." ScienceDaily. www.sciencedaily.com/releases/2010/04/100412162114.htm (accessed October 22, 2014).

Share This



More Plants & Animals News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Cadaver Dogs Aid Search for More Victims of Suspected Indiana Serial Killer

Cadaver Dogs Aid Search for More Victims of Suspected Indiana Serial Killer

Reuters - US Online Video (Oct. 21, 2014) Police in Gary, Indiana are using cadaver dogs to search for more victims after a suspected serial killer confessed to killing at least seven women. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
White Lion Cubs Unveiled to the Public

White Lion Cubs Unveiled to the Public

Reuters - Light News Video Online (Oct. 21, 2014) Visitors to Belgrade zoo meet a pair of three-week-old lion cubs for the first time. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
'Cadaver Dog' Sniffs out Human Remains

'Cadaver Dog' Sniffs out Human Remains

AP (Oct. 21, 2014) Where's a body buried? Buster's nose can often tell you. He's a cadaver dog, specially trained to find human remains and increasingly being used by law enforcement and accepted in courts. These dogs are helping solve even decades-old mysteries. (Oct. 21) Video provided by AP
Powered by NewsLook.com
White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins