Featured Research

from universities, journals, and other organizations

Scientists investigate acoustics in Gulf of Mexico

Date:
May 14, 2010
Source:
Naval Research Laboratory
Summary:
Scientists from the Naval Research Laboratory recently completed an investigation of the acoustic properties of the deep seafloor in the Gulf of Mexico.

NRL scientists and R/V Cape Hatteras crew deploy DTAGS after it is outfitted with an aluminum landing plate that couples the sound energy generated by DTAGS directly into the seafloor. The large orange sphere is one of the floats used in the seafloor-mounted vertical hydrophone arrays, which listened to the sounds generated by DTAGS and their echoes off the seafloor.
Credit: Image courtesy of Naval Research Laboratory

Scientists from the Naval Research Laboratory at Stennis Space Center, MS, (NRL-SSC) and Washington, D.C., recently completed an investigation of the acoustic properties of the deep seafloor in the Gulf of Mexico.

Related Articles


Scientists on the cruise measured the effects of geologic faulting on the efficiency of acoustic wave propagation.

"Knowing the bottom loss-the amount of sound energy lost with each bounce off the bottom-affects how far away one can 'see' a target in the ocean using sound," said Dr. Warren Wood, a geophysicist in the Marine Geosciences Division at NRL-SSC. "What we are trying to determine with this experiment is to what extent the 'visibility' depends on the direction we are looking."

In stiff, well-consolidated sediments, sound waves traveling across the faults or cracks in the earth tend to propagate slower and with lower amplitude than waves traveling along the faults. The magnitude of this effect in soft, deep water sediments is not known.

To measure the amount of this effect (sediment anisotropy), the researchers introduced a sound and then listened with vertical arrays of hydrophones.

The sound the scientists measured was created by a unique piece of equipment called the Deep Towed Acoustics Geophysics System (DTAGS). DTAGS can produce ultra low frequency sounds (220-1000 Hz) in water thousands of meters deep. DTAGS can be towed or placed directly on the seafloor, generating transverse, as well as the more common longitudinal waves.

The investigative experiment was conducted in an area of the Gulf of Mexico where the faults have been extensively mapped and water averages 800-900 m deep.

The experiment's location was within a gas hydrate observatory run by the Gulf of Mexico Hydrates Research Consortium at the University of Mississippi.


Story Source:

The above story is based on materials provided by Naval Research Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Naval Research Laboratory. "Scientists investigate acoustics in Gulf of Mexico." ScienceDaily. ScienceDaily, 14 May 2010. <www.sciencedaily.com/releases/2010/05/100512112422.htm>.
Naval Research Laboratory. (2010, May 14). Scientists investigate acoustics in Gulf of Mexico. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2010/05/100512112422.htm
Naval Research Laboratory. "Scientists investigate acoustics in Gulf of Mexico." ScienceDaily. www.sciencedaily.com/releases/2010/05/100512112422.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Antarctic Sea Ice Mystery Thickens... Literally

Antarctic Sea Ice Mystery Thickens... Literally

Newsy (Nov. 25, 2014) — Antarctic sea ice isn't only expanding, it's thicker than previously thought, and scientists aren't sure exactly why. Video provided by Newsy
Powered by NewsLook.com
3D Map of Antarctic Sea Ice to Shed Light on Climate Change

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

Reuters - Innovations Video Online (Nov. 24, 2014) — A multinational group of scientists have released the first ever detailed, high-resolution 3-D maps of Antarctic sea ice. Using an underwater robot equipped with sonar, the researchers mapped the underside of a massive area of sea ice to gauge the impact of climate change. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins