Featured Research

from universities, journals, and other organizations

Surprising infection inducing mechanism found in bacteria

Date:
May 19, 2010
Source:
Universitat Autonoma de Barcelona
Summary:
A new study demonstrates that bacteria have a surprising mechanism to transfer virulent genes causing infections. The researchers describe an unprecedented evolutionary adaptation and could contribute to finding new ways of treating and preventing bacterial infections.

A study appearing in Nature, with the participation of doctors Susana Campoy and Jordi Barbé from the Department of Genetics and Microbiology at UAB, demonstrates that bacteria have a surprising mechanism to transfer virulent genes causing infections. The researchers describe an unprecedented evolutionary adaptation and could contribute to finding new ways of treating and preventing bacterial infections.

Pathogenic genes are responsible for making bacteria capable of causing diseases. These genes cause bacteria to produce specific types of toxins and determine whether or not a disease will later develop in an individual. These virulent genes can be passed from one bacteria to another if the genome segments containing them, known as pathogenicity islands, are transferred from one to another.

A team of researchers from Universitat Autňnoma de Barcelona, together with members of the CSIC Institute for Agrobiotechnology, Public University of Navarre, Virginia Commonwealth University, and New York University Medical Center, coordinated by the Valencian Institute for Agronomic Research (IVIA) and CEU-Cardenal Herrera University, have studied the mechanisms producing virulence in staphylococcus bacteria and causing Toxic Shock Syndrome, a rare but potentially fatal illness in 50% of the cases.

Researchers observed how pathogenicity islands underwent an unprecedented evolutionary adaptation to be able to transfer pathogens to other innocuous bacteria and thus transform them into virulent bacteria.

Under normal conditions, pathogenicity islands produce the protein Stl, which binds to the DNA segment containing virulent genes and represses the transfer of the island. However, sometimes bacteria become infected with a virus which packages and transfers these virulent genes to other bacteria.

Scientists have discovered that these islands can detect the presences of a virus, eliminate the repression produced by Stl, and thus commence a replication and packaging cycle. The island is then capable of transference and of making other harmless bacteria turn virulent.

The new mechanism discovered by scientists is of great importance for the development of new treatments for diseases caused by bacterial toxins. The pathogenicity island studied is a prototype of a new family of virulent DNA recently discovered which also can be transferred to other species of bacteria such as Listeria monocytogenes, responsible for a large number of intoxications.

Less than a year ago, the research group led by Dr Jordi Barbé from the Department of Genetics and Microbiology at UAB published an article in Science on the antibiotic resistance mechanism in bacteria. "With the two articles in Nature and Science we have basic knowledge of the mechanisms used by bacteria to cause infections. This "doublet" in science not only demonstrates the quality of research being carried out at universities in our country, but also the possibility of creating applications for the treatment and prevention of bacterial infections," says Dr Jordi Barbé.

The research was led by professor José R. Penadés of the CEU-Cardenal Herrera University and members of the Valencian Institute for Agronomic Research (CITA-IVIA). In addition to doctors Susana Campoy and Jordi Barbé of the Department of Genetics and Microbiology at UAB, participating in the study were researchers Maria Ángeles Tormo Más and Ignacio Mir Sanchis from CITA-IVIA and scientists from CSIC Institute for Agrobiotechnology, Public University of Navarre, Virginia Commonwealth University and New York University Medical Center.


Story Source:

The above story is based on materials provided by Universitat Autonoma de Barcelona. Note: Materials may be edited for content and length.


Journal References:

  1. María Ángeles Tormo-Más, Ignacio Mir, Archana Shrestha, Sandra M. Tallent, Susana Campoy, Íńigo Lasa, Jordi Barbé, Richard P. Novick, Gail E. Christie, José R. Penadés. Moonlighting bacteriophage proteins derepress staphylococcal pathogenicity islands. Nature, 2010; DOI: 10.1038/nature09065
  2. E. Guerin, G. Cambray, N. Sanchez-Alberola, S. Campoy, I. Erill, S. Da Re, B. Gonzalez-Zorn, J. Barbe, M.-C. Ploy, D. Mazel. The SOS Response Controls Integron Recombination. Science, 2009; 324 (5930): 1034 DOI: 10.1126/science.1172914

Cite This Page:

Universitat Autonoma de Barcelona. "Surprising infection inducing mechanism found in bacteria." ScienceDaily. ScienceDaily, 19 May 2010. <www.sciencedaily.com/releases/2010/05/100518093824.htm>.
Universitat Autonoma de Barcelona. (2010, May 19). Surprising infection inducing mechanism found in bacteria. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2010/05/100518093824.htm
Universitat Autonoma de Barcelona. "Surprising infection inducing mechanism found in bacteria." ScienceDaily. www.sciencedaily.com/releases/2010/05/100518093824.htm (accessed September 2, 2014).

Share This




More Plants & Animals News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) — A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Washington Wildlife Center Goes Nuts Over Baby Squirrels

Washington Wildlife Center Goes Nuts Over Baby Squirrels

Reuters - US Online Video (Aug. 30, 2014) — An animal rescue in Washington state receives an influx of orphaned squirrels, keeping workers busy as they nurse them back to health. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Newsy (Aug. 29, 2014) — In a new study, a promising experimental treatment for Ebola managed to cure a group of infected macaque monkeys. Video provided by Newsy
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) — State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins