Featured Research

from universities, journals, and other organizations

Precise trace gas analysis, without the noise

Date:
May 30, 2010
Source:
DOE/Pacific Northwest National Laboratory
Summary:
Analyzing trace atmospheric gases can now be considerably more precise with the help of a device that delivers stable and reliable power to the lasers used in gas sensors.

Scientists can analyze atmospheric gas concentrations with laser-based sensors that use systems similar to the one illustrated above. The sensor instrument directs a laser through gas and, based on how much laser light is absorbed by a sample, scientists can determine the specific gases present and their concentrations.
Credit: PNNL

Analyzing trace atmospheric gases can now be considerably more precise with the help of a device that delivers stable and reliable power to the lasers used in gas sensors.

The low-noise current controller was developed at the Department of Energy's Pacific Northwest National Laboratory. The technology was recently licensed to Bozeman, Montana-based Wavelength Electronics Inc. by Battelle, which operates PNNL for DOE.

"Low-noise current controllers open up new ways for us to analyze trace gases," said Matthew Taubman, a PNNL scientist who developed the device. "Now we can evaluate significantly smaller gas concentrations."

Scientists often analyze atmospheric gas concentrations with laser-based sensors. Researchers sample air at sites of interest, such as on the ground near power plants or at high altitudes from airplanes. The sensor instrument then directs a laser through the sample. Based on how much laser light is absorbed by the sample, scientists can determine the specific gases present and their concentrations.

But smaller concentrations of certain gases can be challenging to analyze. One particular problem occurs when "noises," or random fluctuations, exist in a laser's wavelength and line width. Such noise prevents researchers from making precise readings.

PNNL scientists reduced this problem by developing a low-noise current controller. The device reduces the noise on the laser's power source, allowing scientists to detect smaller levels of trace gases. PNNL's controller is the lowest noise controller on the market that was specifically designed for extra-sensitive sensors that use quantum cascade lasers, also called QCLs. Sensors made with QCLs emit light in a wavelength region that many trace gases strongly absorb. QCL-based sensors become even more sensitive when they are powered with low-noise current controllers like PNNL's.

Wavelength Electronics already develops compact current controllers and related components for a variety of semiconductor lasers. Wavelength CEO Mary Johnson also recognized there was a strong potential for her company to make similar QCL-friendly components for Wavelength's customers -- original equipment manufacturers, or OEMs.

That prompted Wavelength to request support through PNNL's Technology Assistance Program, which pairs small businesses looking to overcome specific technology challenges with PNNL scientists. Through the program, Taubman -- the researcher who developed PNNL's low-noise current controller -- compared Wavelength controllers to PNNL low-noise controllers.

At the same time, PNNL and Wavelength brought PNNL's low-noise controllers to one of Wavelength's customers, sensor systems manufacturer Aerodyne Research Inc. of Billerica, Massachusetts. Aerodyne tested the low-noise controllers and learned the devices provided the sensitivity their QCL-based sensors needed. This convinced Johnson that licensing PNNL's controllers would speed up Wavelength's entry into the QCL-based sensor market.

"There's a tremendous need for this technology right now and Wavelength Electronics is pleased to be able to offer it to trace gas researchers and analytical instrument manufacturers," Johnson said.

Wavelength is looking to launch products that incorporate PNNL's low-noise current controller technology by the end of this year. The products will specifically target the QCL market. But other models will be available to work with laser diodes that could be used in microbial detection, skin cancer scanning, DNA sequencing, remote measurements and testing with VCSELs, or vertical cavity surface-emitting lasers, a kind of laser diode.

But Aerodyne didn't want to wait until Wavelength released its new products. Soon after the license went through, Wavelength made the sensor system manufacturer a copy of the low-noise controller for immediate use. Aerodyne is now using these controllers with their most demanding sensor applications, those with continuous-wave QCLs.


Story Source:

The above story is based on materials provided by DOE/Pacific Northwest National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

DOE/Pacific Northwest National Laboratory. "Precise trace gas analysis, without the noise." ScienceDaily. ScienceDaily, 30 May 2010. <www.sciencedaily.com/releases/2010/05/100524130844.htm>.
DOE/Pacific Northwest National Laboratory. (2010, May 30). Precise trace gas analysis, without the noise. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2010/05/100524130844.htm
DOE/Pacific Northwest National Laboratory. "Precise trace gas analysis, without the noise." ScienceDaily. www.sciencedaily.com/releases/2010/05/100524130844.htm (accessed August 27, 2014).

Share This




More Matter & Energy News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins